MiR-223-5p has been previously mentioned to be associated with tumor metastasis in HPV negative vulvar carcinomas, such as in several other tumor types. In the present study, we hypothesized that this microRNA would be important in vulvar cancer carcinogenesis and progression. To investigate this, we artificially mimicked miR-223-5p expression in a cell line derived from lymph node metastasis of vulvar carcinoma (SW962) and performed in vitro assays. As results, lower cell proliferation (p < 0.01) and migration (p < 0.001) were observed when miR-223-5p was overexpressed. In contrast, increased invasive potential of these cells was verified (p < 0.004). In silico search indicated that miR-223-5p targets TP63, member of the TP53 family of proteins, largely described with importance in vulvar cancer. We experimentally demonstrated that this microRNA is capable to decrease levels of p63 at both mRNA and protein levels (p < 0.001, and p < 0.0001; respectively). Also, a significant inverse correlation was observed between miR-223-5p and p63 expressions in tumors from patients (p = 0.0365). Furthermore, low p63 protein expression was correlated with deeper tumor invasion (p = 0.0491) and lower patient overall survival (p = 0.0494). Our study points out miR-223-5p overexpression as a putative pathological mechanism of tumor invasion and a promising therapeutic target and highlights the importance of both miR-223-5p and p63 as prognostic factors in vulvar cancer. Also, it is plausible that the evaluation of p63 expression in vulvar cancer at the biopsy level may bring important contribution on prognostic establishment and in elaborating better surgical approaches for vulvar cancer patients.
Vulvar squamous cell carcinoma (VSCC) is a rare disease that has a high mortality rate ($40%). However, little is known about its molecular signature. Therefore, an integrated genomics approach, based on comparative genome hybridization (aCGH) and genome-wide expression (GWE) array, was performed to identify driver genes in VSCC. To achieve that, DNA and RNA were extracted from frozen VSCC clinical specimens and examined by aCGH and GWE array, respectively. On the basis of the integration of data using the CONEXIC algorithm, PLXDC2 and GNB3 were validated by RT-qPCR. The expression of these genes was then analyzed by IHC in a large set of formalin-fixed paraffin-embedded specimens. These analyses identified 47 putative drivers, 46 of which were characterized by copy number gains that were concomitant with overexpression and one with a copy number loss and downregulation. Two of these genes, PLXDC2 and GNB3, were selected for further validation: PLXDC2 was downregulated and GNB3 was overexpressed compared with non-neoplastic tissue. By IHC, both proteins were ubiquitously expressed throughout vulvar tissue. High expression of GNB3 and low PLXDC2 immunostaining in the same sample was significantly associated with less lymph node metastasis and greater disease-free survival. On the basis of a robust methodology never used before for VSCC evaluation, two novel prognostic markers in vulvar cancer are identified: one with favorable prognosis (GNB3) and the other with unfavorable prognosis (PLXDC2).Implications: This genomics study reveals markers that associate with prognosis and may provide guidance for better treatment in vulvar cancer.
BackgroundVulvar carcinoma is an infrequent tumour, accounting for fewer than 3% of all malignant tumours that affect women, but its incidence is rising in the past few decades. In young women, the manifestation of the vulvar carcinoma is often linked to risk factors such as smoking and HPV infection, but most cases develop in women aged over 50 years through poorly understood genetic mechanisms. Rho-associated coiled-coil-containing protein kinase 1 (ROCK1) has been implicated in many cellular processes, but its function in vulvar cancer has never been examined. In this study, we aimed to determine the prognostic value of ROCK1 gene and protein analysis in vulvar squamous cell carcinoma (VSCC).MethodsROCK1 expression levels were measured in 16 vulvar tumour samples and adjacent normal tissue by qRT-PCR. Further, 96 VSCC samples were examined by immunohistochemistry (IHC) to confirm the involvement of ROCK1 in the disease. The molecular and pathological results were correlated with the clinical data of the patients. Sixteen fresh VSCC samples were analyzed by array-based comparative genomic hybridization (aCGH).ResultsIn each pair of samples, ROCK1 levels were higher by qRT-PCR in normal tissue compared with the tumour samples (p = 0.016). By IHC, 100% of invasive front areas of the tumour and 95.8% of central tumour areas were positive for ROCK1. Greater expression of ROCK1 was associated with the absence of lymph node metastasis (p = 0.022) and a lower depth of invasion (p = 0.002). In addition, higher ROCK1 levels correlated with greater recurrence-free survival (p = 0.001). Loss of ROCK1 was independently linked to worse cancer-specific survival (p = 0.0054) by multivariate analysis. This finding was validated by IHC, which demonstrated enhanced protein expression in normal versus tumour tissue (p < 0.001). By aCGH, 42.9% of samples showed a gain in copy number of the ROCK1 gene.ConclusionsROCK1 is lower expressed in tumour tissue when compared with adjacent normal vulvar epithelia. In an independent sample set of VSCCs, lower expression levels of ROCK1 correlated with worse survival rates and a poor prognosis. These findings provide important information for the clinical management of vulvar cancer.
Reversible phosphorylation of proteins, executed by kinases and phosphatases, is the major posttranslational protein modification in eukaryotic cells, causing them to become activated or deactivated. This intracellular event represents a critical regulatory mechanism of several signaling pathways and can be related to a broad number of diseases, including cancer. Few decades ago, protein tyrosine phosphatases (PTPs) were considered as tumor suppressors. However, nowadays, accumulating evidence demonstrates that a misregulation of PTP activities plays a crucial and decisive role in cancer progression and metastasis. In this chapter, we will focus on the molecular aspects that support the crucial role of PTPs in cancer and in turn make them promising for prediction, monitoring, and rational appropriate therapy selection of individual patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.