Nitriles are widespread in the environment as a result of biological and industrial activity. Nitrile hydratases catalyse the hydration of nitriles to the corresponding amide and are often associated with amidases, which catalyze the conversion of amides to the corresponding acids. Nitrile hydratases have potential as biocatalysts in bioremediation and biotransformation applications, and several successful examples demonstrate the advantages. In this work a real-time PCR assay was designed for the detection of Fe-type nitrile hydratase genes from environmental isolates purified from nitrile-enriched soils and seaweeds. Specific PCR primers were also designed for amplification and sequencing of the genes. Identical or highly homologous nitrile hydratase genes were detected from isolates of numerous genera from geographically diverse sites, as were numerous novel genes. The genes were also detected from isolates of genera not previously reported to harbour nitrile hydratases. The results provide further evidence that many bacteria have acquired the genes via horizontal gene transfer. The real-time PCR assay should prove useful in searching for nitrile hydratases that could have novel substrate specificities and therefore potential in industrial applications.
Nitrilase enzymes (EC 3.5.5.1) are responsible for the direct hydration of nitriles to their corresponding carboxylic acids and ammonia. The utilization of nitrilase enzymes in biocatalysis toward bio‐pharmaceuticals and industrial applications facilitates the move towards green chemistry. The body of research presented describes a novel clade‐specific touchdown PCR protocol for the detection of novel nitrilase genes. The presented study identified partial sequences of 15 novel nitrilase genes across 7 genera, with partial DNA sequence homology (%) displayed across an additional 16 genera. This research will prove valuable in the screening of microorganisms for the identification of novel clade‐specific nitrilase genes, with predicted enantioselective profiles as determined by their clade characterizations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.