The mycotoxin zearalenone (ZEN) is a common contaminant of swine feed which has been related to a wide range of reproductive anomalies in swine, such as pelvic organ prolapse, anestrous, and pseudopregnancy. New information is needed to understand how ZEN and related metabolites accumulate in swine reproductive tissues. We conducted a feeding study to track ZEN and the metabolite α-zearalenol (α-ZEL) in swine liver and reproductive tissues. Thirty pubertal gilts were randomly assigned one of three treatments, with ten pigs in each treatment group: (1) base feed with solvent for 21 days, (2) ZEN-spiked feed for seven days followed by base feed with solvent for 14 days, and (3) ZEN-spiked feed for 21 days. At the end of the trial, liver, anterior vagina, posterior vagina, cervix, uterus, ovaries, and broad ligament were collected from pigs. ZEN was found in the anterior vagina, posterior vagina, cervix, and ovaries, with significantly higher concentrations in the cervix relative to other reproductive tissues. ZEN and α-ZEL were found in liver tissue from pigs in each treatment group. Our results show that ZEN accumulates more in the cervix than other reproductive tissues. The presence of ZEN in reproductive tissues may be indicative of ZEN-related reproductive symptoms. Future work could examine how ZEN concentrations vary in reproductive tissues as a factor of the pigs age, weight, sex, or parity, to establish parameters that make pig more sensitive to ZEN.
Pelvic organ prolapse (POP) is a condition characterized by displacement of the vagina from its normal anatomical position leading to symptoms such as incontinence, physical discomfort, and poor self-image. Conservative treatment has shown limited success and surgical procedures, including the use of mesh, often lead to severe complications. To improve the current treatment methods for prolapse, the viscoelastic properties of vaginal tissue need to be characterized. We determined the biaxial stress relaxation response of vaginal tissue isolated from healthy pubertal gilts. Square specimens (n = 20) with sides aligned along the longitudinal directions (LD) and circumferential direction (CD) of the vagina were biaxially displaced up to 5 N. The specimens were then kept at the displacements corresponding to 5 N for 20 min in both the LD and CD, and the corresponding strains were measured using digital image correlation (DIC). The stresses in the LD and CD were found to decrease by 49.91 ± 5.81% and 46.22 ± 5.54% after 20 min, respectively. The strain in the LD and CD increased slightly from 0.080 ± 0.054 to 0.091 ± 0.064 and 0.050 ± 0.039 to 0.058 ± 0.047, respectively, but these changes were not significant (p > 0.01). By using the Peleg model, the initial decay rate and the asymptotic stress during stress relaxation were found to be significantly higher in the LD than in the CD (p≪0.001), suggesting higher stress relaxation in the LD. These findings may have implications for improving current surgical mesh, mechanical devices, and physical therapy used for prolapse treatment.
Consumption of zearalenone (ZEN) detrimentally affects tissues and systems throughout the body, and these deleterious effects are especially pronounced in swine. The objectives of this project were to determine the effects of short-term consumption of ZEN (at concentrations that could be found on-farm) on growth, carcass weight, liver weight and reproductive tissues of pubertal gilts, and to determine if the effects are transient or persistent. Cross-bred gilts (107.25 ± 2.69 kg) were randomly assigned to one of three feed additives: 1) solvent only for 21 d (CON; n=10), 2) ZEN for 7 d followed by 14 d of solvent (ZEN-7; 6 mg/d; n=10), and 3) ZEN for 21 d (ZEN-21; 6 mg/d; n=10). Body weights were collected at the beginning and end of the experiment (189.1 ± 0.8 and 211.1 ± 0.8 days of age, respectively). Carcass weights and tissues were collected at harvest. There were no treatment-based differences in growth, carcass, liver or reproductive tissue weights. Histological analyses revealed differences based on treatment and the interaction between treatment and luteal status. The thickness of the ampullary muscularis declined with ZEN exposure (P<0.05), while the isthmic epithelial cell height (P<0.01) and uterine endometrial thickness (P<0.02) increased. Interestingly, the thickness of the isthmic muscularis, uterine myometrium and epithelial cell height only differed in the presence of a corpus luteum. Uterine epithelial cell height in the luteal phase was lowest in ZEN-7 pigs (P<0.01). The isthmic muscularis in the luteal phase was thinner in pigs from both ZEN treatments (P<0.01). Conversely, the luteal-stage myometrium was thicker in pigs from both ZEN treatments (P<0.01). The discovery of these tissue-based differences during the luteal phase is particularly concerning since this corresponds with the time when embryos would be affected by the functional competency of the oviduct and uterus. The results of this work demonstrate that short-term consumption of ZEN produces microscopic, but not macroscopic alterations in reproductive organs which are likely to have negative effects on their subsequent function and that these differences persist even after ZEN consumption ceases. Taken together, these results indicate that it is insufficient to rely solely on outwardly visible symptoms as indicators of zearalenone exposure, as detrimental effects on reproductive tissues were found in the absence of phenotypic and morphologic changes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.