Recently, motor imagery EEG signals have been widely applied in Brain–Computer Interfaces (BCI). These signals are typically observed in the first motor cortex of the brain, resulting from the imagination of body limb movements. For non-invasive BCI systems, it is not apparent how to locate the electrodes, optimizing the accuracy for a given task. This study proposes a comparative analysis of channel signals exploiting the Deep Learning (DL) technique and a public dataset to locate the most discriminant channels. EEG channels are usually selected based on the function and nomenclature of electrode location from international standards. Instead, the most suitable configuration for a given paradigm must be determined by analyzing the proper selection of the channels. Therefore, an EEGNet network was implemented to classify signals from different channel location using the accuracy metric. Achieved results were then contrasted with results from the state-of-the-art. As a result, the proposed method improved BCI classification accuracy.
This article presents a methodology to reduce the energy consumption of an industrial robot. We propose a design for a 3R serial manipulator of general geometry. We show an analytical model aiming to analyze the search space of architectures based on the torsion angles of the robot to determine the optimal architecture that allows the efficient use of energy. The analytical model provides a theoretical estimation of the energy consumption and is validated by monitoring the experimental robot. The numerical calculations obtained with a particular case reduced the energy consumption by approximately 7.5%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.