The characterisation of changes in coral communities depends heavily on systematic monitoring programs and the collection of necessary metrics to assess reef health. Coral cover is the most used metric to determine reef health. The current organizational shift in coral requires the evaluation of complementary metrics, such as colony size and frequency distributions, which help to infer the responses of the coral populations to local stress or larger scale environmental changes. In this study, underwater digital photogrammetry techniques were used to assess the live cover of all coral colonies ≥3 cm2 and determine the size-frequency distribution of the dominant species in the shallow reefs of the Cozumel Reefs National Park (CRNP). In addition, the minimum sampling area (m2) needed to obtain a representative sample of the local species pool was estimated. Areas between 550 and 825 m2 per reef were photographed to generate high-resolution digital ortho-mosaics. The live area of the colonies was digitised to generate community matrices of species and abundance. EstimateS software was used to generate accumulation curves and diversity (Shannon H′) at increasing area intervals. Chi-Square tests (χ2, p = 0.05) were used to compare the observed vs estimated species richness. Spearman’s coefficients (rs), were calculated to correlate the increase in sampling area (m2) vs H′, and the Clench’s function was used to validate the observed richness (R2 = 1 and R > 90%). SIMPER analysis was performed to identify dominant species. Comparisons in terms of abundance, coral cover and size-frequencies were performed with Kruskal-Wallis (H test, p = 0.05), and paired Mann-Whitney (U test, p = 0.05). In order to obtain 90% of the species richness, a minimum sampling area of 374 m2is needed. This sampling area could be used in shallow Caribbean reefs with similar characteristics. Twelve (mainly non-massive) species: Agaricia agaricites, A humilis, A. tenuifolia, Eusmilia fastigiata, Meandrina meandrites, Montastrea cavernosa, Orbicella annularis, Porites astreoides, P. porites, Pseudodiploria strigosa, Siderastrea radians andS. siderea, were dominant in terms of abundance and coral cover. A significant increase (p < 0.05) in the number of colonies and live coral (m2) was observed from north to south of the study area. Furthermore, a wide intraspecific variation of size-frequency, even between adjacent reefs, was also observed. The size-frequency distributions presented positive skewness and negative kurtosis, which are related to stable populations, with a greater number of young colonies and a constant input of recruits. Considering the increase in disturbances in the Caribbean and the appearance of a new coral disease, digital photogrammetry techniques allow coral community characteristics to be assessed at high spatial resolutions and over large scales, which would be complementary to conventional monitoring programs.
The precise assessing and monitoring of coral reefs are necessary to address and understand the threats and changes in coral communities. With the development of new technologies and algorithms for image processing, new protocols like underwater photogrammetry are implemented to study these ecosystems. This study compares the main ecological metrics for reef condition assessment, obtained with an underwater digital photogrammetry protocol (UWP) and traditional sampling design simulations in coral reefs of the Cozumel Reefs National Park. Three orthomosaics (380 m2) per reef on six fringing reefs were constructed, and the hard coral community characterized using a Geographic Information System (GIS). The orthomosaics were also used as a basis to simulate transect lines and obtain data on the hard coral community according to the video transect (VT) protocol, point intercept (PIT) protocol, and the Atlantic and Gulf Rapid Reef Assessment (AGRRA) protocol. Higher colony abundance, species richness, and lower coral cover estimates (p < 0.05) were obtained with the UWP. This protocol was also sensitive to small sized species. All the sampling designs showed similar capability to identify dominant species in terms of colony abundance and coral cover. The VT, PIT, and AGGRA showed similar coral cover values (p > 0.05), which seems to indicate that these sampling designs overestimate this important metric. Our results will help to understand and integrate the observations obtained with UWP with long-term data obtained with commonly used monitoring protocols in the Caribbean region.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.