IntroductionDissolved organic matter (DOM) composition varies over space and time, with a multitude of factors driving the presence or absence of each compound found in the complex DOM mixture. Compounds ubiquitously present across a wide range of river systems (hereafter termed core compounds) may differ in chemical composition and reactivity from compounds present in only a few settings (hereafter termed satellite compounds). Here, we investigated the spatial patterns in DOM molecular formulae presence (occupancy) in surface water and sediments across 97 river corridors at a continental scale using the “Worldwide Hydrobiogeochemical Observation Network for Dynamic River Systems—WHONDRS” research consortium.MethodsWe used a novel data-driven approach to identify core and satellite compounds and compared their molecular properties identified with Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR MS).ResultsWe found that core compounds clustered around intermediate hydrogen/carbon and oxygen/carbon ratios across both sediment and surface water samples, whereas the satellite compounds varied widely in their elemental composition. Within surface water samples, core compounds were dominated by lignin-like formulae, whereas protein-like formulae dominated the core pool in sediment samples. In contrast, satellite molecular formulae were more evenly distributed between compound classes in both sediment and water molecules. Core compounds found in both sediment and water exhibited lower molecular mass, lower oxidation state, and a higher degree of aromaticity, and were inferred to be more persistent than global satellite compounds. Higher putative biochemical transformations were found in core than satellite compounds, suggesting that the core pool was more processed.DiscussionThe observed differences in chemical properties of core and satellite compounds point to potential differences in their sources and contribution to DOM processing in river corridors. Overall, our work points to the potential of data-driven approaches separating rare and common compounds to reduce some of the complexity inherent in studying riverine DOM.
Species prevalence across the landscape is related to their local abundance, which is a result of deterministic and stochastic processes that select organisms capable of recolonizing sites where they were once extinct, a process known as the rescue effect. The occupancy-frequency distribution (OFD) describes these patterns and has been extensively used to understand organism's distribution but has been poorly tested on microorganisms. In order to test OFD on freshwater bacteria, we collected data from 60 shallow lakes distributed across a wide area in southeastern Brazil, to determine the bacterial operational taxonomic units (OTUs) that were present in all sites (core) and at only one site (satellite). Then, we analyzed the spatial abundance distributions of individual OTUs to understand the influence of local abundances on regional occupancy patterns. Finally, we tested the environmental factors that influenced occupancy and abundance. We found a significant bimodal OFD for freshwater bacteria using both OTUs (97% clustering) and amplicon sequence variants (ASVs, unique sequences), with 13 core OTUs and 1169 satellite OTUs, but only three core ASVs. Core organisms had a bimodal or gamma abundance distribution. The main driver of the core community was pH, while nutrients were key when the core community was excluded and the rest of the community (mild and satellite taxa) was considered. This study demonstrates the close relationship between local environmental conditions and the abundance and dispersion of microorganisms, which shapes their distribution across the landscape.
The biogeography of bacterial communities is a key topic in Microbial Ecology. Regarding continental water, most studies are carried out in the northern hemisphere, leaving a gap on microorganism’s diversity patterns on a global scale. South America harbours approximately one third of the world’s total freshwater resources, and is one of these understudied regions. To fill this gap, we compiled 16S rRNA amplicon sequencing data of microbial communities across South America continental water ecosystems, presenting the first database µSudAqua[db]. The database contains over 866 georeferenced samples from 9 different ecoregions with contextual environmental information. For its integration and validation we constructed a curated database (µSudAqua[db.sp]) using samples sequenced by Illumina MiSeq platform with commonly used prokaryote universal primers. This comprised ~60% of the total georeferenced samples of the µSudAqua[db]. This compilation was carried out in the scope of the µSudAqua collaborative network and represents one of the most complete databases of continental water microbial communities from South America.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.