Although the Sw-5 gene cluster has been cloned, and Sw-5b has been identified as the functional gene copy that confers resistance to Tomato spotted wilt virus (TSWV), its avirulence (Avr) determinant has not been identified to date. Nicotiana tabacum 'SR1' plants transformed with a copy of the Sw-5b gene are immune without producing a clear visual response on challenge with TSWV, whereas it is shown here that N. benthamiana transformed with Sw-5b gives a rapid and conspicuous hypersensitive response (HR). Using these plants, from all structural and non-structural TSWV proteins tested, the TSWV cell-to-cell movement protein (NSM ) was confirmed as the Avr determinant using a Potato virus X (PVX) replicon or a non-replicative pEAQ-HT expression vector system. HR was induced in Sw-5b-transgenic N. benthamiana as well as in resistant near-isogenic tomato lines after agroinfiltration with a functional cell-to-cell movement protein (NSM ) from a resistance-inducing (RI) TSWV strain (BR-01), but not with NSM from a Sw-5 resistance-breaking (RB) strain (GRAU). This is the first biological demonstration that Sw-5-mediated resistance is triggered by the TSWV NSM cell-to-cell movement protein.
The genus Tospovirus was considered as monotypic with Tomato spotted wilt virus (TSWV) being the only assigned species. However, extensive studies with worldwide isolates revealed that this genus comprises a number of species with distinct virulence profiles. The Neotropical South America is one center of Tospovirus diversity with many endemic species. Groundnut ringspot virus (GRSV), TSWV, Tomato chlorotic spot virus (TCSV), and Chrysanthemum stem necrosis virus (CSNV) are the predominant tomato-infecting species in Brazil. Sources of resistance were found in Solanum (section Lycopersicon) mainly against TSWV isolates from distinct continents, but there is an overall lack of information about resistance to other viral species. One-hundred and five Solanum (section Lycopersicon: Solanaceae) accessions were initially evaluated for their reaction against a GRSV isolate by analysis of symptom expression and systemic virus accumulation using DAS-ELISA. A subgroup comprising the most resistant accessions was re-evaluated in a second assay with TSWV, TCSV, and GRSV isolates and in a third assay with a CSNV isolate. Seven S. peruvianum accessions displayed a broad-spectrum resistance to all viral species with all plants being free of symptoms and systemic infection. Sources of resistance were also found in tomato cultivars with the Sw-5 gene and also in accessions of S. pimpinellifolium, S. chilense, S. arcanum, S. habrochaites, S. corneliomuelleri, and S. lycopersicum. The introgression/incorporation of these genetic factors into cultivated tomato varieties might allow the development of genetic materials with broad-spectrum resistance, as well as with improved levels of phenotypic expression.
The best levels of broad-spectrum Tospovirus resistance reported in tomatoes thus far are conferred by the Sw-5 locus. This locus contains at least five paralogues (denoted Sw-5a through Sw-5e), of which Sw-5b represents the actual resistance gene. Here we evaluated a panel of seven PCR primer pairs matching different sequences within a genomic region spanning the Sw-5a and Sw-5b gene cluster. Primer efficiency evaluation was done employing tomato isolines with and without the Sw-5 locus. One primer pair produced a single and co-dominant polymorphism between susceptible and resistant isolines. Sequence analysis of these amplicons indicated that they were specific for the Sw-5 locus and their differences were due to insertions/deletions. The polymorphic SCAR amplicon encompass a conserved sequence of the promoter region of the functional Sw-5b gene, being located in the position -31 from its open reading frame. This primer pair was also evaluated in field assays and with a collection of accessions known to be either susceptible or resistant to tospoviruses. An almost complete correlation was found between resistance under greenhouse/field conditions and the presence of the marker. Therefore, this primer pair is a very useful tool in marker-assisted selection systems in a large range of tomato accessions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.