Congenital disorders of glycosylation comprise most of the nearly 70 genetic disorders known to be caused by impaired synthesis of glycoconjugates. The effects are expressed in most organ systems, and most involve the nervous system. Typical manifestations include structural abnormalities, (eg, rapidly progressive cerebellar atrophy), myopathies (including congenital muscular dystrophies and limb-girdle dystrophies), strokes and stroke-like episodes, epileptic seizures, developmental delay, and demyelinating neuropathy. Patients can have neurological symptoms associated with coagulopathies, immune dysfunction with or without infections, and cardiac, renal, or hepatic failure, which are common features of glycosylation disorders. The diagnosis of congenital disorders of glycosylation should be considered for any patient with multisystem disease and in those with more specific phenotypic features. Measurement of concentrations of selected glycoconjugates can be used to screen for many of these disorders, and molecular diagnosis is becoming more widely available in clinical practice. Disease-modifying treatments are available for only a few disorders, but all affected individuals benefit from early diagnosis and aggressive management.
This review will present principles of glycosylation, describe the relevant glycosylation pathways and their related disorders, and highlight some of the neurological aspects and issues that continue to challenge researchers. Over 100 rare human genetic disorders that result from deficiencies in the different glycosylation pathways are known today. Most of these disorders impact the central and/or peripheral nervous systems. Patients typically have developmental delay/intellectual disability, hypotonia, seizures, neuropathy, and metabolic abnormalities in multiple organ systems. Between these disorders there is great clinical diversity because all cell types differentially glycosylate proteins and lipids. The patients have hundreds of mis-glycosylated products afflicting a myriad of processes including cell signaling, cell-cell interaction and cell migration. This vast complexity in glycan composition and function, along with limited analytic tools has impeded the identification of key glycosylated molecules that cause pathologies, and to date few critical target proteins have been pinpointed.
Antimicrobial peptides, such as LL-37, are found both in nonvertebrates and vertebrates, where they represent important components of innate immunity. Bacterial infections at epithelial surfaces are associated with substantial induction of LL-37 expression, which allows efficient lysis of the invading microbes. Peptide-mediated lysis results in the release of bacterial nucleic acids with potential pathobiological activity in the host. Here, we demonstrate that LL-37 targets extracellular DNA plasmid to the nuclear compartment of mammalian cells, where it is expressed. DNA transfer occurred at physiological LL-37 concentrations that killed bacterial cells, whereas virtually no cytotoxic or growth-inhibitory effects were observed in mammalian cells. Furthermore, LL-37 protected DNA from serum nuclease degradation. LL-37⅐DNA complex uptake was a saturable time-and temperature-dependent process and was sensitive to cholesterol-depleting agents that are known to disrupt lipid rafts and caveolae, as shown by flow cytometry. Confocal fluorescence microscopy studies showed localization of internalized DNA to compartments stained by cholera toxin B, a marker of lipid rafts, but failed to demonstrate any co-localization of internalized DNA with caveolin-positive endocytotic vesicles. Moreover, LL-37-mediated plasmid uptake and reporter gene expression were strictly dependent on cell surface proteoglycans. We conclude that the human antimicrobial peptide LL-37 binds to, protects, and efficiently targets DNA plasmid to the nuclei of mammalian cells through caveolae-independent membrane raft endocytosis and cell surface proteoglycans.
We describe a new Type II congenital disorder of glycosylation (CDG-II) caused by mutations in the conserved oligomeric Golgi (COG) complex gene, COG8. The patient has severe psychomotor retardation, seizures, failure to thrive and intolerance to wheat and dairy products. Analysis of serum transferrin and total serum N-glycans showed normal addition of one sialic acid, but severe deficiency in subsequent sialylation of mostly normal N-glycans. Patient fibroblasts were deficient in sialylation of both N- and O-glycans, and also showed slower brefeldin A (BFA)-induced disruption of the Golgi matrix, reminiscent of COG7-deficient cells. Patient fibroblasts completely lacked COG8 protein and had reduced levels and/or mislocalization of several other COG proteins. The patient had two COG8 mutations which severely truncated the protein and destabilized the COG complex. The first, IVS3 + 1G > A, altered the conserved splicing site of intron 3, and the second deleted two nucleotides (1687-1688 del TT) in exon 5, truncating the last 47 amino acids. Lentiviral-mediated complementation with normal COG8 corrected mislocalization of other COG proteins, normalized sialylation and restored normal BFA-induced Golgi disruption. We propose to call this new disorder CDG-IIh or CDG-II/COG8.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.