Summary Aluminium adjuvants are the most widely used adjuvants in both human and veterinary vaccines. These adjuvants have been used in practical vaccination for more than 60 years and are generally recognized as safe and as stimulators of Th2 immunity. The present review gives a short introduction to the pioneering research at the start of the use of aluminium compounds as adjuvants, including references on the chemistry of these compounds. Analytical methods for identifying the most commonly used aluminium compounds, such as boehmite and aluminium hydroxyphosphate, are mentioned. Emphasis is placed on the important factors for antigen adsorption and on the latest work using gene-deficient mice in the research of the mechanism of aluminium adjuvants in terms of cytokine and T-cell subset stimulation. Key references on the ability of aluminium adjuvants to stimulate IgE and also in vivo clearing of aluminium adjuvants are discussed. Furthermore, the review addresses the issue of local reactions in the context of injection route and local tissue disturbance. Possible new applications of aluminium adjuvants in, for example, combined aluminium-adsorbed protein and DNA oligonucleotide vaccines as well as the possible use of aluminium adjuvants in combination with IL-12 to stimulate Th1-type immune responses are mentioned.
The ESAT-6 antigen from Mycobacterium tuberculosis is a dominant target for cell-mediated immunity in the early phase of tuberculosis (TB) in TB patients as well as in various animal models. The purpose of our study was to evaluate the potential of ESAT-6 in an experimental TB vaccine. We started out using dimethyl dioctadecylammonium bromide (DDA), an adjuvant which has been demonstrated to be efficient for the induction of cellular immune responses and has been used successfully before as a delivery system for TB vaccines. Here we demonstrate that, whereas immune responses to both short-term-culture filtrate and Ag85B are efficiently induced with DDA, this adjuvant was inefficient for the induction of immune responses to ESAT-6. Therefore, we investigated the modulatory effect of monophosphoryl lipid A (MPL), an immunomodulator which in different combinations has demonstrated strong adjuvant activity for both cellular and humoral immune responses. We show in the present study that vaccination with ESAT-6 delivered in a combination of MPL and DDA elicited a strong ESAT-6-specific T-cell response and protective immunity comparable to that achieved with Mycobacterium bovis BCG.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.