Tracking-by-detection is a common approach to multiobject tracking. With ever increasing performances of object detectors, the basis for a tracker becomes much more reliable. In combination with commonly higher frame rates, this poses a shift in the challenges for a successful tracker. That shift enables the deployment of much simpler tracking algorithms which can compete with more sophisticated approaches at a fraction of the computational cost. We present such an algorithm and show with thorough experiments its potential using a wide range of object detectors. The proposed method can easily run at 100K fps while outperforming the state-of-the-art on the DETRAC vehicle tracking dataset.
In a broad range of computer vision tasks, convolutional neural networks (CNNs) are one of the most prominent techniques due to their outstanding performance. Yet it is not trivial to find the best performing network structure for a specific application because it is often unclear how the network structure relates to the network accuracy. We propose an evolutionary algorithm-based framework to automatically optimize the CNN structure by means of hyper-parameters. Further, we extend our framework towards a joint optimization of a committee of CNNs to leverage specialization and cooperation among the individual networks. Experimental results show a significant improvement over the state-of-the-art on the well-established MNIST dataset for handwritten digits recognition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.