Synthetic nanopores have been used to study individual biomolecules in high thoroughput but their performance as sensors does not match biological ion channels. Controlling the translocation times of single-molecule analytes and their non-specific interaction with pore walls remain a challenge. Inspired by the olfactory sensilla of the insect antenna, here we show that coating nanopores with fluid bilayer lipids allows the pore diameters to be fine-tuned in sub-nanometre increments. Incorporation of mobile ligands in the lipid conferred specificity and slowed down the translocation of targeted proteins sufficiently to time-resolve translocation events of individual proteins. The lipid coatings also prevented pores from clogging, eliminated non-specific binding and enabled the translocation of amyloid-beta (Aβ) oligomers and fibrils. Through combined analysis of translocation time, volume, charge, shape and ligand affinity, different proteins were identified.
Established methods for characterizing proteins typically require physical or chemical modification steps or cannot be used to examine individual molecules in solution. Ionic current measurements through electrolyte-filled nanopores can characterize single native proteins in an aqueous environment, but currently offer only limited capabilities. Here we show that the zeptolitre sensing volume of bilayer-coated solid-state nanopores can be used to determine the approximate shape, volume, charge, rotational diffusion coefficient and dipole moment of individual proteins. To do this, we developed a theory for the quantitative understanding of modulations in ionic current that arise from the rotational dynamics of single proteins as they move through the electric field inside the nanopore. The approach allows us to measure the five parameters simultaneously, and we show that they can be used to identify, characterize and quantify proteins and protein complexes with potential implications for structural biology, proteomics, biomarker detection and routine protein analysis.
Biological protein pores and pore-forming peptides can generate a pathway for the flux of ions and other charged or polar molecules across cellular membranes. In nature, these nanopores have diverse and essential functions that range from maintaining cell homeostasis and participating in cell signaling to activating or killing cells. The combination of the nanoscale dimensions and sophisticated – often regulated – functionality of these biological pores make them particularly attractive for the growing field of nanobiotechnology. Applications range from single-molecule sensing to drug delivery and targeted killing of malignant cells. Potential future applications may include the use of nanopores for single strand DNA sequencing and for generating bio-inspired, and possibly, biocompatible visual detection systems and batteries. This article reviews the current state of applications of pore-forming peptides and proteins in nanomedicine, sensing, and nanoelectronics.
This paper introduces a strategy for generating ion current rectification through nano- and micropores. This method generates ion current rectification by electroosmotic-driven flow of liquids of varying viscosity (and hence varying conductance) into or out of the narrowest constriction of a pore. The magnitude of current rectification was described by a rectification factor, R(f), which is defined by the ratio of the current measured at a positive voltage divided by the current measured at a negative voltage. This method achieved rectification factors in the range of 5-15 using pores with diameters ranging from 10 nm to 2.2 microm. These R(f) values are similar to the rectification factors reported in other nanopore-based methods that did not employ segmented surface charges. Interestingly, this work showed that in cylindrical nanopores with diameters of 10 nm and a length of at least 275 nm, electroosmotic flow was present and could generate ion current rectification. Unlike previous methods for generating ion current rectification that require nanopores with diameters comparable to the Debye length, this work demonstrated ion current rectification in micropores with diameters 500 times larger than the Debye length. Thus this method extends the concept of fluidic diodes to the micropore range. Several experiments designed to alter or remove electroosmotic flow through the pore demonstrated that electroosmotic flow was required for the mode of ion current rectification reported here. Consequently, the magnitude of current rectification could be used to indicate the presence of electroosmotic flow and the breakdown of electroosmotic flow with decreasing ionic strength and hence increasing electric double layer overlap inside nanopores.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.