Synthetic nanopores have been used to study individual biomolecules in high thoroughput but their performance as sensors does not match biological ion channels. Controlling the translocation times of single-molecule analytes and their non-specific interaction with pore walls remain a challenge. Inspired by the olfactory sensilla of the insect antenna, here we show that coating nanopores with fluid bilayer lipids allows the pore diameters to be fine-tuned in sub-nanometre increments. Incorporation of mobile ligands in the lipid conferred specificity and slowed down the translocation of targeted proteins sufficiently to time-resolve translocation events of individual proteins. The lipid coatings also prevented pores from clogging, eliminated non-specific binding and enabled the translocation of amyloid-beta (Aβ) oligomers and fibrils. Through combined analysis of translocation time, volume, charge, shape and ligand affinity, different proteins were identified.
Anodic stripping voltammetry (ASV) and cathodic stripping voltammetry (CSV) were used to determine Mn concentration using metal catalyst free carbon nanotube (MCFCNT) electrodes and square wave stripping voltammetry (SWSV). The MCFCNTs are synthesized using a Carbo Thermal Carbide Conversion method which results in a material that does not contain residual transition metals. Detection limits of 120 nM and 93 nM were achieved for ASV and CSV, respectively, with a deposition time of 60 s. CSV was found to be better than ASV in Mn detection in many aspects, such as limit of detection and sensitivity. The CSV method was used in pond water matrix addition measurements.
The redox activation of galactose oxidase by various oxidants is characterized by using a unique thin-layer electrochemical cell. Activation is shown to be strictly a redox process and can be rapidly accomplished by using ferricyanide, cobalt terpyridine or tetracyanomonophenanthroline ferrate, and a control electrode to control solution potential. This oxidation is a one-electron process and does not result in modified galactose oxidase which exhibits enhanced activity. On the contrary, this oxidation is required for activity. The solution potential dependence of activity is independent of which of these mediator-titrants is used, the concentration used, and which of various substrates is used in the determination. The substrates used were acetol, dihydroxyacetone, glycerin, 2-propyn-1-ol, allyl alcohol, 2-butyne-1,4-diol, furfuryl alcohol, benzyl alcohol, 4-pyridylcarbinol, galactose, and stachyose. The E1/2 and n values obtained are 0.40 +/- 0.005 V vs. SHE and 0.9 +/- 0.1 electron at pH 7.3. E1/2 is defined as the potential at which half the maximal enzymatic activity is observed and probably reflects the E0' of the enzymic group involved in activation. A model is proposed in which activation occurs during turnover due to the redox buffering (by oxidants) of an enzymic Cu(II)/Cu(I) state which has a higher E0' than in resting galactose oxidase. The pH dependence of E1/2 is 60 mV/pH unit in the pH range 6.0-8.0. The data suggest that the deprotonation of an amino acid residue facilitates the one-electron oxidation (activation) of galactose oxidase.
Anodic stripping voltammetry (ASV) determination of Pb2+, Cd2+, and Zn2+ was done using metal catalyst free carbon nanotube (MCFCN) electrodes. Osteryoung square wave stripping voltammetry (OSWSV) was selected for detection. The MCFCNTs are synthesized via Carbo Thermal Carbide Conversion method which leads to residual transition metal free in the CNT structure. The new material shows very good results in detecting heavy metal ions, such as Pb2+, Cd2+, and Zn2+. The calculated limits of detection were 13 nM, 32 nM and 50 nM for Pb2+, Cd2+ and Zn2+, respectively with a deposition time of 150 s.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.