Anodic stripping voltammetry (ASV) determination of Pb2+, Cd2+, and Zn2+ was done using metal catalyst free carbon nanotube (MCFCN) electrodes. Osteryoung square wave stripping voltammetry (OSWSV) was selected for detection. The MCFCNTs are synthesized via Carbo Thermal Carbide Conversion method which leads to residual transition metal free in the CNT structure. The new material shows very good results in detecting heavy metal ions, such as Pb2+, Cd2+, and Zn2+. The calculated limits of detection were 13 nM, 32 nM and 50 nM for Pb2+, Cd2+ and Zn2+, respectively with a deposition time of 150 s.
A novel method for the detection of nitrate was developed using simplified nitrate reductase (SNaR) that was produced by genetic recombination techniques. The SNaR consists of the fragments of the Mo-molybdopterin (MO-MPT) binding site and nitrate reduction active site and has high activity for nitrate reduction. The method is based on a unique combination of the enzyme-catalyzed reduction of nitrate to nitrite by thin-layer coulometry followed by spectroscopic measurement of the colored product generated from the reaction of nitrite with Griess reagents. Coulometric reduction of nitrate to nitrite used methyl viologen (MV(2+)) as the electron transfer mediator for SNaR and controlled potential coulometry in an indium tin oxide (ITO) thin-layer electrochemical cell. Absorbance at 540 nm was proportional to the concentration of nitrate in the sample with a linear range of 1-160 μM and a sensitivity of 8000 AU M(-1). The method required less than 60 μL of sample. Detection of nitrate could also be performed by measuring the charge associated with coulometry. However, the spectroscopic procedure gave superior performance because of interference from the large background charge associated with coulometry. Results for the determination of nitrate concentration in several natural water samples using this device with spectroscopic detection are in good agreement with analysis done with a standard method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.