The electrical properties of eumelanin, a ubiquitous natural pigment, have fascinated scientists since the late 1960s. For several decades, the hydrationdependent electrical properties of eumelanin have mainly been interpreted within the amorphous semiconductor model. Recent works undermined this paradigm. Here we study protonic and electronic charge carrier transport in hydrated eumelanin in thin film form. Thin films are ideal candidates for these studies since they are readily accessible to chemical and morphological characterization and potentially amenable to device applications. Current−voltage (I-V) measurements, transient current measurements with proton-transparent electrodes, and electrochemical impedance spectroscopy (EIS) measurements are reported and correlated with the results of the chemical characterization of the films, performed by X-ray photoelectron spectroscopy. We show that the electrical response of hydrated eumelanin films is dominated by ionic conduction (10 −4 −10 −3 S cm −1 ), largely attributable to protons, and electrochemical processes. To propose an explanation for the electrical response of hydrated eumelanin films as observed by EIS and I-V, we considered the interplay of proton migration, redox processes, and electronic transport. These new insights improve the current understanding of the charge carrier transport properties of eumelanin opening the possibility to assess the potential of eumelanin for organic bioelectronic applications, e.g. protonic devices and implantable electrodes, and to advance the knowledge on the functions of eumelanin in biological systems.
Proton conduction is essential in biological systems. Oxidative phosphorylation in mitochondria, proton pumping in bacteriorhodopsin, and uncoupling membrane potentials by the antibiotic Gramicidin are examples. In these systems, H+ hop along chains of hydrogen bonds between water molecules and hydrophilic residues – proton wires. These wires also support the transport of OH− as proton holes. Discriminating between H+ and OH− transport has been elusive. Here, H+ and OH− transport is achieved in polysaccharide- based proton wires and devices. A H+- OH− junction with rectifying behaviour and H+-type and OH−-type complementary field effect transistors are demonstrated. We describe these devices with a model that relates H+ and OH− to electron and hole transport in semiconductors. In turn, the model developed for these devices may provide additional insights into proton conduction in biological systems.
Two-terminal protonic devices with PdHx proton conducting contacts and a Nafion channel achieve 25 ms spiking, short term depression, and low-energy memory switching.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.