Using photoemission electron microscopy in combination with X-ray magnetic linear dichroism, we report reconfiguration upon nanostructuring of the antiferromagnetic domain structure in epitaxial LaFeO3 thin films. Antiferromagnetic (AFM) nanoislands were synthesized using a dedicated process, devised to define nanostructures with magnetic order embedded in a paramagnetic matrix. Significant impact on the AFM domain configuration was observed. Extended domains were found to form along edges parallel to the in-plane ⟨100⟩ crystalline axes of the cubic substrate, with their AFM spin axis parallel to the edge. No such edge-imposed domain configuration was found for nanoislands defined with the edges at 45° with the in-plane crystalline axes. Epitaxial constraints on the film crystalline structure appear to play an important role in the formation of the edge-bound extended AFM domains. The data indicate a magnetostatic origin of this domain reconfiguration.
The technologically important exchange coupling in antiferromagnetic/ferromagnetic bilayers is investigated for embedded nanostructures defined in a LaFeO(3)/La(0.7)Sr(0.3)MnO(3) bilayer. Exploiting the element specificity of soft X-ray spectromicroscopy, we selectively probe the magnetic order in the two layers. A transition from perpendicular to parallel spin alignment is observed for these nanostructures, dependent on size and crystalline orientation. The results show that shape-induced anisotropy in the antiferromagnet can override the interface exchange coupling in spin-flop coupled nanostructures.
The magnetic domains of embedded micromagnets with 2 m  2 m dimensions defined in epitaxial La 0:7 Sr 0:3 MnO 3 (LSMO) thin films and LaFeO 3 =LSMO bilayers were investigated using soft x-ray magnetic microscopy. Square micromagnets aligned with their edges parallel to the easy axes of LSMO provide an ideal experimental geometry for probing the influence of interface exchange coupling on the magnetic domain patterns. The observation of unique domain patterns not reported for ferromagnetic metal microstructures, namely divergent antiferromagnetic vortex domains and ''Z''-type domains, suggests the simultaneous presence of spin-flop coupling and local exchange bias in this system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.