Modern instruction sets extend their load/store-instructions with cache hints, as an additional means to bridge the processor-memory speed gap. Cache hints are used to specify the cache level at which the data is likely to be found, as well as the cache level where the data is stored after accessing it. In order to improve a program's cache behavior, the cache hint is selected based on the data locality of the instruction. We represent the data locality of an instruction by its reuse distance distribution. The reuse distance is the amount of data addressed between two accesses to the same memory location. The distribution allows to efficiently estimate the cache level where the data will be found, and to determine the level where the data should be stored to improve the hit rate. The Open64 EPIC-compiler was extended with cache hint selection. Execution on an Itanium multiprocessor shows speedups of up to 36% in numerical and 23% in non-numerical programs.
The potential of FPGAs as accelerators for high-performance computing applications is very large, but many factors are involved in their performance. The design for FPGAs and the selection of the proper optimizations when mapping computations to FPGAs lead to prohibitively long developing time. Alternatives are the high-level synthesis (HLS) tools, which promise a fast design space exploration due to design at high-level or analytical performance models which provide realistic performance expectations, potential impediments to performance, and optimization guidelines. In this paper we propose the combination of both, in order to construct a performance model for FPGAs which is able to visually condense all the helpful information for the designer. Our proposed model extends the roofline model, by considering the resource consumption and the parameters used in the HLS tools, to maximize the performance and the resource utilization within the area of the FPGA. The proposed model is applied to optimize the design exploration of a class of window-based image processing applications using two different HLS tools. The results show the accuracy
of the model as well as its flexibility to be combined with any HLS tool.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.