BackgroundCardiovascular diseases are expanding to a major social-economic burden in the Western World and undermine man's deep desire for healthy ageing. Epidemiological studies suggest that flavanol-rich foods (e.g. grapes, wine, chocolate) sustain cardiovascular health. For an evidenced-based application, however, sound clinical data on their efficacy are strongly demanded.MethodsIn a double-blind, randomized, placebo-controlled intervention study we supplemented 28 male smokers with 200 mg per day of monomeric and oligomeric flavanols (MOF) from grape seeds. At baseline, after 4 and 8 weeks we measured macro- and microvascular function and a cluster of systemic biomarkers for major pathological processes occurring in the vasculature: disturbances in lipid metabolism and cellular redox balance, and activation of inflammatory cells and platelets.ResultsIn the MOF group serum total cholesterol and LDL decreased significantly (P≤0.05) by 5% (n = 11) and 7% (n = 9), respectively in volunteers with elevated baseline levels. Additionally, after 8 weeks the ratio of glutathione to glutathione disulphide in erythrocytes rose from baseline by 22% (n = 15, P<0.05) in MOF supplemented subjects. We also observed that MOF supplementation exerts anti-inflammatory effects in blood towards ex vivo added bacterial endotoxin and significantly reduces expression of inflammatory genes in leukocytes. Conversely, alterations in macro- and microvascular function, platelet aggregation, plasma levels of nitric oxide surrogates, endothelin-1, C-reactive protein, fibrinogen, prostaglandin F2alpha, plasma antioxidant capacity and gene expression levels of antioxidant defense enzymes did not reach statistical significance after 8 weeks MOF supplementation. However, integrating all measured effects into a global, so-called vascular health index revealed a significant improvement of overall vascular health by MOF compared to placebo (P≤0.05).ConclusionOur integrative multi-biomarker approach unveiled the pleiotropic vascular health benefit of an 8 weeks supplementation with 200 mg/d MOF in humans.Trial RegistrationClinicalTrials.gov NCT00742287
Recent studies demonstrate that maternal diet during pregnancy results in long-lasting effects on the progeny. Supplementation of maternal diet with genistein, a phytoestrogen ubiquitous in the daily diet, altered coat color of agouti mice due to epigenetic changes. We studied hematopoiesis of mice prenatally exposed to genistein (270 mg/kg feed) compared with that of mice prenatally exposed to phytoestrogen-poor feed and observed a significant increase in granulopoiesis, erythropoiesis, and mild macrocytosis at the adult age of 12 wk. Genistein exposure was associated with hypermethylation of certain repetitive elements, which coincided with a significant down-regulation of estrogen-responsive genes and genes involved in hematopoiesis in bone marrow cells of genistein-exposed mice, as assessed by microarray technology. Although genistein exposure did not affect global methylation in fetal liver of fetuses at embryonic day 14.5, it accelerated the switch from primitive to definitive erythroid lineage. Taken together, our data demonstrate that prenatal exposure to genistein affects fetal erythropoiesis and exerts lifelong alterations in gene expression and DNA methylation of hematopoietic cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.