Recently, patients with mutations in DOCK8 have been reported to have a combined immunodeficiency characterized by cutaneous viral infections and allergies. Natural killer (NK) cells represent a first-line defense against viral infections suggesting that DOCK8 might participate in NK cell function. In this study, we demonstrate that DOCK8-suppressed human NK cells showed defects in natural cytotoxicity as well as specific activating receptor-mediated NK cytotoxicity. Additionally, compared to control NK cells, NK cells depleted of DOCK8 showed defective conjugate formation, along with decreased polarization of LFA-1, F-actin, and cytolytic granules toward the cytotoxic synapse. Using a proteomic approach we found that DOCK8 exists in a macromolecular complex with the Wiskott-Aldrich Syndrome protein, an actin nucleation promoting factor activated by CDC42, as well as talin, which is required for integrin-mediated adhesion. Taken together, our results demonstrate an important role for DOCK8 in NK cell effector function and provide important new mechanistic insight into how DOCK8 regulates F-actin and integrin-mediated adhesion in immune cells.
Background
Interleukin (IL)-33 is implicated in the pathophysiology of asthma and allergic diseases. However, our knowledge is limited regarding how IL-33 release is controlled. The transcription factor nuclear factor-erythroid-2-related factor 2 (Nrf2) plays a key role in antioxidant response regulation.
Objective
The goal of this project was to investigate the role of cellular oxidative stress in controlling IL-33 release in airway epithelium.
Methods
Complementary approaches were used that included human bronchial epithelial cells and mouse models of airway type-2 immunity that were exposed to fungus Alternaria extract. The clinically available Nrf2 activator 2-cyano-3,12-dioxooleana-1,9-dien-28-oic acid methyl ester (CDDO-Me) was used to evaluate the role of Nrf2-induced antioxidant molecules.
Results
Human bronchial epithelial cells produced reactive oxygen species (ROS) when they were exposed to Alternaria extract. ROS scavengers, such as glutathione (GSH) and N-acetyl cysteine, prevented extracellular secretion of ATP and increases in intracellular calcium concentrations that precede IL-33 release. Administration of CDDO-Me to mice enhanced expression of a number of antioxidant molecules in the lungs and elevated lung levels of endogenous GSH. Importantly, CDDO-Me treatment reduced allergen-induced ATP secretion and IL-33 release by airway epithelial cells in vitro and protected mice from IL-33 release and asthma-like pathological changes in the lungs.
Conclusions
The balance between oxidative stress and antioxidant responses plays a key role in controlling IL-33 release in airway epithelium. The therapeutic potential of Nrf2 activators needs to be considered for asthma and allergic airway diseases.
Carrying a greater number of risk alleles might be expected to decrease age at diagnosis. However, glioma susceptibility conferred by variation in telomerase-related genes did not follow this pattern. This supports the hypothesis that telomerase-related mechanisms of telomere maintenance are more associated with gliomas that develop later in life than those utilizing telomerase-independent mechanisms (ie, alternative lengthening of telomeres).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.