Olsen, E., Aanes, S., Mehl, S., Holst, J. C., Aglen, A., and Gjøsæter, H. 2010. Cod, haddock, saithe, herring, and capelin in the Barents Sea and adjacent waters: a review of the biological value of the area. – ICES Journal of Marine Science, 67: 87–101. Cod, haddock, saithe, herring, and capelin are the most important fish species in the Barents Sea and adjacent waters. Ecosystem-based management requires species-specific knowledge of the biological value and vulnerability throughout their life history and distributional range. For each of the five species and four annual quarters, the spawning (egg) areas, nursery areas for larvae and juveniles, and feeding grounds for adults are described and mapped. Areas of eggs (spawning) and larvae were the most important because these are the life stages when fish are most vulnerable to anthropogenic impact. The greatest overlap of spawning areas was from Røstbanken in the south to the Varanger Peninsula in the northeast, and overlap of larval distribution was more extensive.
Risk assessments quantify the probability of undesirable events along with their consequences. They are used to prioritize management interventions and assess tradeoffs, serving as an essential component of ecosystem-based management (EBM). A central objective of most risk assessments for conservation and management is to characterize uncertainty and impacts associated with one or more pressures of interest. Risk assessments have been used in marine resource management to help evaluate the risk of environmental, ecological, and anthropogenic pressures on species or habitats including for data-poor fisheries management (e.g., toxicity, probability of extinction, habitat alteration impacts). Traditionally, marine risk assessments focused on singular pressure-response relationships, but recent advancements have included use of risk assessments in an EBM context, providing a method for evaluating the cumulative impacts of multiple pressures on multiple ecosystem components. Here, we describe a conceptual framework for ecosystem risk assessment (ERA), highlighting its role in operationalizing EBM, with specific attention to ocean management considerations. This framework builds on the ecotoxicological and conservation literature on risk assessment and includes recent advances that focus on risks posed by fishing to marine ecosystems. We review how examples of ERAs from the United States fit into this framework, explore the variety of analytical approaches that have been used to conduct ERAs, and assess the challenges and data gaps that remain. This review discusses future prospects for ERAs as EBM decision-support tools, their expanded role in integrated ecosystem assessments, and the development of next-generation risk assessments for coupled natural-human systems.
Marine spatial planning (MSP) is often considered as a pragmatic approach to implement an ecosystem based management in order to manage marine space in a sustainable way. This requires the involvement of multiple actors and stakeholders at various governmental and societal levels. Several factors affect how well the integrated management of marine waters will be achieved, such as different governance settings (division of power between central and local governments), economic activities (and related priorities), external drivers, spatial scales, incentives and objectives, varying approaches to legislation and political will. We compared MSP in Belgium, Norway and the US to illustrate how the integration of stakeholders and governmental levels differs among these countries along the factors mentioned above. Horizontal integration (between sectors) is successful in all three countries, achieved through the use of neutral ‘round-table’ meeting places for all actors. Vertical integration between government levels varies, with Belgium and Norway having achieved full integration while the US lacks integration of the legislature due to sharp disagreements among stakeholders and unsuccessful partisan leadership. Success factors include political will and leadership, process transparency and stakeholder participation, and should be considered in all MSP development processes.
Abstract.-We compared the relative abundance of lake trout Salvelinus namaycush spawners in gill nets during fall [1999][2000][2001] in Lake Michigan at 19 stocked spawning sites with that at 25 unstocked sites to evaluate how effective site-specific stocking was in recolonizing historically important spawning reefs. The abundance of adult fish was higher at stocked onshore and offshore sites than at unstocked sites. This suggests that site-specific stocking is more effective at establishing spawning aggregations than relying on the ability of hatchery-reared lake trout to find spawning reefs, especially those offshore. Spawner densities were generally too low and too young at most sites to expect significant natural reproduction. However, densities were sufficiently high at some sites for reproduction to occur and therefore the lack of recruitment was attributable * Corresponding author: charles_bronte@fws.gov 1 Retired.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.