A man with a spinal-cord injury (right) prepares for a virtual cycle race in which competitors steer avatars using brain signals. COMMENT © 2 0 1 7 M a c m i l l a n P u b l i s h e r s L i m i t e d , p a r t o f S p r i n g e r N a t u r e . A l l r i g h t s r e s e r v e d .example. Moreover, researchers can already interpret a person's neural activity from functional magnetic resonance imaging scans at a rudimentary level 1 -that the individual is thinking of a person, say, rather than a car.It might take years or even decades until BCI and other neurotechnologies are part of our daily lives. But technological developments mean that we are on a path to a world in which it will be possible to decode people's mental processes and directly manipulate the brain mechanisms underlying their intentions, emotions and decisions; where individuals could communicate with others simply by thinking; and where powerful computational systems linked directly to people's brains aid their interactions with the world such that their mental and physical abilities are greatly enhanced.Such advances could revolutionize the treatment of many conditions, from brain injury and paralysis to epilepsy and schizophrenia, and transform human experience for the better. But the technology could also exacerbate social inequalities and offer corporations, hackers, governments or anyone else new ways to exploit and manipulate people. And it could profoundly alter some core human characteristics: private mental life, individual agency and an understanding of individuals as entities bound by their bodies.It is crucial to consider the possible ramifications now.The Morningside Group comprises neuroscientists, neurotechnologists, clinicians, ethicists and machine-intelligence engineers. It includes representatives from Google and Kernel (a neurotechnology start-up in Los Angeles, California); from international brain projects; and from academic and research institutions in the United States, Canada, Europe, Israel, China, Japan and Australia. We gathered at a workshop sponsored by the US National Science Foundation at Columbia University, New York, in May 2017 to discuss the ethics of neurotechnologies and machine intelligence.We believe that existing ethics guidelines are insufficient for this realm 2 . These include the Declaration of Helsinki, a statement of ethical principles first established in 1964 for medical research involving human subjects (go.nature.com/2z262ag); the Belmont Report, a 1979 statement crafted by the US National Commission for the Protection of Human Subjects of Biomedical and Behavioural Research (go.nature.com/2hrezmb); and the Asilomar artificial intelligence (AI) statement of cautionary principles, published early this year and signed by business leaders and AI researchers, among others (go.nature.com/2ihnqac).To begin to address this deficit, here we lay out recommendations relating to four areas of concern: privacy and consent; agency and identity; augmentation; and bias. Different nations and people of varying re...
Using prenatal tests to prevent the birth of babies with disabilities seems to be self-evidently good to many people. Even if the testing will not help bring a healthy baby to term this time, it gives prospective parents a chance to try again to conceive. To others, however, prenatal testing looks rather different. If one thinks about the history of our society's treatment of people with disabilities, it is not hard to see why people identified with the disability rights movement might regard such testing as dangerous. For the members of this movement, living with disabling traits need not be detrimental to an individual's prospects of leading a worthwhile life, or to the families in which they grow up, or to society at large. Although the movement has no one position on prenatal diagnosis, many of its adherents believe that public support for prenatal diagnosis and abortion based on disability contravenes the movement's basic philosophy and goals.
Purpose Comprehensive genomic analysis including exome and genome sequencing is increasingly being utilized in research studies, leading to the generation of incidental genetic findings. It is unclear how researchers plan to deal with incidental genetic findings. Methods We conducted a survey of the practices and attitudes of 234 members of the US genetic research community and performed qualitative semistructured interviews with 28 genomic researchers to understand their views and experiences with incidental genetic research findings. Results We found that 12% of the researchers had returned incidental genetic findings, and an additional 28% planned to do so. A large majority of researchers (95%) believe that incidental findings for highly penetrant disorders with immediate medical implications should be offered to research participants. However, there was no consensus on returning incidental results for other conditions varying in penetrance and medical actionability. Researchers raised concerns that the return of incidental findings would impose significant burdens on research and could potentially have deleterious effects on research participants if not performed well. Researchers identified assistance needed to enable effective, accurate return of incidental findings. Conclusion The majority of the researchers believe that research participants should have the option to receive at least some incidental genetic research results.
The Hastings Center, a bioethics research institute, is holding a series of 5 workshops to examine the controversies surrounding the use of medication to treat emotional and behavioral disturbances in children. These workshops bring together clinicians, researchers, scholars, and advocates with diverse perspectives and from diverse fields. Our first commentary in CAPMH, which grew out of our first workshop, explained our method and explored the controversies in general. This commentary, which grows out of our second workshop, explains why informed people can disagree about ADHD diagnosis and treatment. Based on what workshop participants said and our understanding of the literature, we make 8 points. (1) The ADHD label is based on the interpretation of a heterogeneous set of symptoms that cause impairment. (2) Because symptoms and impairments are dimensional, there is an inevitable "zone of ambiguity," which reasonable people will interpret differently. (3) Many other variables, from different systems and tools of diagnosis to different parenting styles and expectations, also help explain why behaviors associated with ADHD can be interpreted differently. (4) Because people hold competing views about the proper goals of psychiatry and parenting, some people will be more, and others less, concerned about treating children in the zone of ambiguity. (5) To recognize that nature has written no bright line between impaired and unimpaired children, and that it is the responsibility of humans to choose who should receive a diagnosis, does not diminish the significance of ADHD. (6) Once ADHD is diagnosed, the facts surrounding the most effective treatment are complicated and incomplete; contrary to some popular wisdom, behavioral treatments, alone or in combination with low doses of medication, can be effective in the long-term reduction of core ADHD symptoms and at improving many aspects of overall functioning. (7) Especially when a child occupies the zone of ambiguity, different people will emphasize different values embedded in the pharmacological and behavioral approaches. (8) Truly informed decision-making requires that parents (and to the extent they are able, children) have some sense of the complicated and incomplete facts regarding the diagnosis and treatment of ADHD.
Many scientists and doctors hope that affordable genome sequencing will lead to more personalized medical care and improve public health in ways that will benefit children, families, and society more broadly. One hope in particular is that all newborns could be sequenced at birth, thereby setting the stage for a lifetime of medical care and self-directed preventive actions tailored to each child's genome. Indeed, commentators often suggest that universal genome sequencing is inevitable. Such optimism can come with the presumption that discussing the potential limits, cost, and downsides of widespread application of genomic technologies is pointless, excessively pessimistic, or overly cautious. We disagree. Given the pragmatic challenges associated with determining what sequencing data mean for the health of individuals, the economic costs associated with interpreting and acting on such data, and the psychosocial costs of predicting one's own or one's child's future life plans based on uncertain testing results, we think this hope and optimism deserve to be tempered. In the analysis that follows, we distinguish between two reasons for using sequencing: to diagnose individual infants who have been identified as sick and to screen populations of infants who appear to be healthy. We also distinguish among three contexts in which sequencing for either diagnosis or screening could be deployed: in clinical medicine, in public health programs, and as a direct-to-consumer service. Each of these contexts comes with different professional norms, policy considerations, and public expectations. Finally, we distinguish between two main types of genome sequencing: targeted sequencing, where only specific genes are sequenced or analyzed, and whole-exome or whole-genome sequencing, where all the DNA or all the coding segments of all genes are sequenced and analyzed. In a symptomatic newborn, targeted or genome-wide sequencing can help guide other tests for diagnosis or for specific treatment that is urgently needed. Clinicians use the infant's symptoms (or phenotype) to interrogate the sequencing data. These same complexities and uncertainties, however, limit the usefulness of genome-wide sequencing as a population screening tool. While we recognize considerable benefit in using targeted sequencing to screen for or detect specific conditions that meet the criteria for inclusion in newborn screening panels, use of genome-wide sequencing as a sole screening tool for newborns is at best premature. We conclude that sequencing technology can be beneficially used in newborns when that use is nuanced and attentive to context.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.