Abstract-Using electromyogram (EMG) signals to control upper-limb prostheses is an important clinical option, offering a person with amputation autonomy of control by contracting residual muscles. The dexterity with which one may control a prosthesis has progressed very little, especially when controlling multiple degrees of freedom. Using pattern recognition to discriminate multiple degrees of freedom has shown great promise in the research literature, but it has yet to transition to a clinically viable op tion. This article describes the pertinent issues and best practices in EMG pattern recognition, identifies the major challenges in deploying robust control, and advocates research directions that may have an effect in the near future.
Abstract--Reported studies on pattern recognition of electromyograms (EMG) for the control of prosthetic devices traditionally focus on classification accuracy of signals recorded in a laboratory. The difference between the constrained nature in which such data are often collected and the unpredictable nature of prosthetic use is an example of the semantic gap between research findings and a viable clinical implementation. In this work, we demonstrate that the variations in limb position associated with normal use can have a substantial impact on the robustness of EMG pattern recognition, as illustrated by an increase in average classification error from 3.8% to 18%. We propose to solve this problem by (1) collecting EMG data and training the classifier in multiple limb positions and by (2) measuring the limb position with accelerometers. Applying these two methods to data from ten normally limbed subjects, we reduce the average classification error from 18% to 5.7% and 5.0%, respectively. Our study shows how sensor fusion (using EMG and accelerometers) may be an efficient method to mitigate the effect of limb position and improve classification accuracy.
One of the hottest topics in rehabilitation robotics is that of proper control of prosthetic devices. Despite decades of research, the state of the art is dramatically behind the expectations. To shed light on this issue, in June, 2013 the first international workshop on Present and future of non-invasive peripheral nervous system (PNS)–Machine Interfaces (MI; PMI) was convened, hosted by the International Conference on Rehabilitation Robotics. The keyword PMI has been selected to denote human–machine interfaces targeted at the limb-deficient, mainly upper-limb amputees, dealing with signals gathered from the PNS in a non-invasive way, that is, from the surface of the residuum. The workshop was intended to provide an overview of the state of the art and future perspectives of such interfaces; this paper represents is a collection of opinions expressed by each and every researcher/group involved in it.
Specialized myoelectric sensors have been used in prosthetics for decades, but, with recent advancements in wearable sensors, wireless communication and embedded technologies, wearable electromyographic (EMG) armbands are now commercially available for the general public. Due to physical, processing, and cost constraints, however, these armbands typically sample EMG signals at a lower frequency (e.g., 200 Hz for the Myo armband) than their clinical counterparts. It remains unclear whether existing EMG feature extraction methods, which largely evolved based on EMG signals sampled at 1000 Hz or above, are still effective for use with these emerging lower-bandwidth systems. In this study, the effects of sampling rate (low: 200 Hz vs. high: 1000 Hz) on the classification of hand and finger movements were evaluated for twenty-six different individual features and eight sets of multiple features using a variety of datasets comprised of both able-bodied and amputee subjects. The results show that, on average, classification accuracies drop significantly (p< 0.05) from 2% to 56% depending on the evaluated features when using the lower sampling rate, and especially for transradial amputee subjects. Importantly, for these subjects, no number of existing features can be combined to compensate for this loss in higher-frequency content. From these results, we identify two new sets of recommended EMG features (along with a novel feature, L-scale) that provide better performance for these emerging low-sampling rate systems.
Recently, renewed focus on prosthetics research has pushed the field to provide more clinically relevant outcomes. One way to work towards this goal is to examine the differences between research and clinical results. The constrained nature in which offline training and test data is often collected compared to the dynamic nature of prosthetic use is just one example. In this work, we demonstrate that variations in limb position after training can have a substantial impact on the robustness of myoelectric pattern recognition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.