This paper represents an ongoing investigation of dexterous and natural control of upper extremity prostheses using the myoelectric signal (MES). The scheme described within uses pattern recognition to process four channels of MES, with the task of discriminating multiple classes of limb movement. The method does not require segmentation of the MES data, allowing a continuous stream of class decisions to be delivered to a prosthetic device. It is shown in this paper that, by exploiting the processing power inherent in current computing systems, substantial gains in classifier accuracy and response time are possible. Other important characteristics for prosthetic control systems are met as well. Due to the fact that the classifier learns the muscle activation patterns for each desired class for each individual, a natural control actuation results. The continuous decision stream allows complex sequences of manipulation involving multiple joints to be performed without interruption. Finally, minimal storage capacity is required, which is an important factor in embedded control systems.
Abstract-Using electromyogram (EMG) signals to control upper-limb prostheses is an important clinical option, offering a person with amputation autonomy of control by contracting residual muscles. The dexterity with which one may control a prosthesis has progressed very little, especially when controlling multiple degrees of freedom. Using pattern recognition to discriminate multiple degrees of freedom has shown great promise in the research literature, but it has yet to transition to a clinically viable op tion. This article describes the pertinent issues and best practices in EMG pattern recognition, identifies the major challenges in deploying robust control, and advocates research directions that may have an effect in the near future.
In this study, we developed an algorithm based on neuromuscular–mechanical fusion to continuously recognize a variety of locomotion modes performed by patients with transfemoral (TF) amputations. Electromyographic (EMG) signals recorded from gluteal and residual thigh muscles and ground reaction forces/moments measured from the prosthetic pylon were used as inputs to a phase-dependent pattern classifier for continuous locomotion-mode identification. The algorithm was evaluated using data collected from five patients with TF amputations. The results showed that neuromuscular–mechanical fusion outperformed methods that used only EMG signals or mechanical information. For continuous performance of one walking mode (i.e., static state), the interface based on neuromuscular–mechanical fusion and a support vector machine (SVM) algorithm produced 99% or higher accuracy in the stance phase and 95% accuracy in the swing phase for locomotion-mode recognition. During mode transitions, the fusion-based SVM method correctly recognized all transitions with a sufficient predication time. These promising results demonstrate the potential of the continuous locomotion-mode classifier based on neuromuscular–mechanical fusion for neural control of prosthetic legs.
This work represents an ongoing investigation of dexterous and natural control of powered upper limbs using the myoelectric signal. When approached as a pattern recognition problem, the success of a myoelectric control scheme depends largely on the classification accuracy. A novel approach is described that demonstrates greater accuracy than in previous work. Fundamental to the success of this method is the use of a wavelet-based feature set, reduced in dimension by principal components analysis. Further, it is shown that four channels of myoelectric data greatly improve the classification accuracy, as compared to one or two channels. It is demonstrated that exceptionally accurate performance is possible using the steady-state myoelectric signal. Exploiting these successes, a robust online classifier is constructed, which produces class decisions on a continuous stream of data. Although in its preliminary stages of development, this scheme promises a more natural and efficient means of myoelectric control than one based on discrete, transient bursts of activity.
The surface myoelectric signal (MES) has been used as an input to controllers for powered prostheses for many years. As a result of recent technological advances it is reasonable to assume that there will soon be implantable myoelectric sensors which will enable the internal MES to be used as input to these controllers. An internal MES measurement should have less muscular crosstalk allowing for more independent control sites. However, it remains unclear if this benefit outweighs the loss of the more global information contained in the surface MES. This paper compares the classification accuracy of six pattern recognition-based myoelectric controllers which use multi-channel surface MES as inputs to the same controllers which use multi-channel intramuscular MES as inputs. An experiment was designed during which surface and intramuscular MES were collected simultaneously for 10 different classes of isometric contraction. There was no significant difference in classification accuracy as a result of using the intramuscular MES measurement technique when compared to the surface MES measurement technique. Impressive classification accuracy (97%) could be achieved by optimally selecting only three channels of surface MES.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.