This work represents an ongoing investigation of dexterous and natural control of powered upper limbs using the myoelectric signal. When approached as a pattern recognition problem, the success of a myoelectric control scheme depends largely on the classification accuracy. A novel approach is described that demonstrates greater accuracy than in previous work. Fundamental to the success of this method is the use of a wavelet-based feature set, reduced in dimension by principal components analysis. Further, it is shown that four channels of myoelectric data greatly improve the classification accuracy, as compared to one or two channels. It is demonstrated that exceptionally accurate performance is possible using the steady-state myoelectric signal. Exploiting these successes, a robust online classifier is constructed, which produces class decisions on a continuous stream of data. Although in its preliminary stages of development, this scheme promises a more natural and efficient means of myoelectric control than one based on discrete, transient bursts of activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.