Introduction: Intuitive prosthesis control is one of the most important challenges in order to reduce the user effort in learning how to use an artificial hand. This work presents the development of a novel method for pattern recognition of sEMG signals able to discriminate, in a very accurate way, dexterous hand and fingers movements using a reduced number of electrodes, which implies more confidence and usability for amputees. Methods: The system was evaluated for ten forearm amputees and the results were compared with the performance of able-bodied subjects. Multiple sEMG features based on fractal analysis (detrended fluctuation analysis and Higuchi's fractal dimension) combined with traditional magnitude-based features were analyzed. Genetic algorithms and sequential forward selection were used to select the best set of features. Support vector machine (SVM), K-nearest neighbors (KNN) and linear discriminant analysis (LDA) were analyzed to classify individual finger flexion, hand gestures and different grasps using four electrodes, performing contractions in a natural way to accomplish these tasks. Statistical significance was computed for all the methods using different set of features, for both groups of subjects (able-bodied and amputees). Results: The results showed average accuracy up to 99.2% for able-bodied subjects and 98.94% for amputees using SVM, followed very closely by KNN. However, KNN also produces a good performance, as it has a lower computational complexity, which implies an advantage for real-time applications.
Conclusion:The results show that the method proposed is promising for accurately controlling dexterous prosthetic hands, providing more functionality and better acceptance for amputees.