This paper describes a novel approach to the control of a multifunction prosthesis based on the classification of myoelectric patterns. It is shown that the myoelectric signal exhibits a deterministic structure during the initial phase of a muscle contraction. Features are extracted from several time segments of the myoelectric signal to preserve pattern structure. These features are then classified using an artificial neural network. The control signals are derived from natural contraction patterns which can be produced reliably with little subject training. The new control scheme increases the number of functions which can be controlled by a single channel of myoelectric signal but does so in a way which does not increase the effort required by the amputee. Results are presented to support this approach.
This paper represents an ongoing investigation of dexterous and natural control of upper extremity prostheses using the myoelectric signal (MES). The scheme described within uses pattern recognition to process four channels of MES, with the task of discriminating multiple classes of limb movement. The method does not require segmentation of the MES data, allowing a continuous stream of class decisions to be delivered to a prosthetic device. It is shown in this paper that, by exploiting the processing power inherent in current computing systems, substantial gains in classifier accuracy and response time are possible. Other important characteristics for prosthetic control systems are met as well. Due to the fact that the classifier learns the muscle activation patterns for each desired class for each individual, a natural control actuation results. The continuous decision stream allows complex sequences of manipulation involving multiple joints to be performed without interruption. Finally, minimal storage capacity is required, which is an important factor in embedded control systems.
The surface myoelectric signal (MES) has been used as an input to controllers for powered prostheses for many years. As a result of recent technological advances it is reasonable to assume that there will soon be implantable myoelectric sensors which will enable the internal MES to be used as input to these controllers. An internal MES measurement should have less muscular crosstalk allowing for more independent control sites. However, it remains unclear if this benefit outweighs the loss of the more global information contained in the surface MES. This paper compares the classification accuracy of six pattern recognition-based myoelectric controllers which use multi-channel surface MES as inputs to the same controllers which use multi-channel intramuscular MES as inputs. An experiment was designed during which surface and intramuscular MES were collected simultaneously for 10 different classes of isometric contraction. There was no significant difference in classification accuracy as a result of using the intramuscular MES measurement technique when compared to the surface MES measurement technique. Impressive classification accuracy (97%) could be achieved by optimally selecting only three channels of surface MES.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.