In this study, we developed an algorithm based on neuromuscular–mechanical fusion to continuously recognize a variety of locomotion modes performed by patients with transfemoral (TF) amputations. Electromyographic (EMG) signals recorded from gluteal and residual thigh muscles and ground reaction forces/moments measured from the prosthetic pylon were used as inputs to a phase-dependent pattern classifier for continuous locomotion-mode identification. The algorithm was evaluated using data collected from five patients with TF amputations. The results showed that neuromuscular–mechanical fusion outperformed methods that used only EMG signals or mechanical information. For continuous performance of one walking mode (i.e., static state), the interface based on neuromuscular–mechanical fusion and a support vector machine (SVM) algorithm produced 99% or higher accuracy in the stance phase and 95% accuracy in the swing phase for locomotion-mode recognition. During mode transitions, the fusion-based SVM method correctly recognized all transitions with a sufficient predication time. These promising results demonstrate the potential of the continuous locomotion-mode classifier based on neuromuscular–mechanical fusion for neural control of prosthetic legs.
The surface myoelectric signal (MES) has been used as an input to controllers for powered prostheses for many years. As a result of recent technological advances it is reasonable to assume that there will soon be implantable myoelectric sensors which will enable the internal MES to be used as input to these controllers. An internal MES measurement should have less muscular crosstalk allowing for more independent control sites. However, it remains unclear if this benefit outweighs the loss of the more global information contained in the surface MES. This paper compares the classification accuracy of six pattern recognition-based myoelectric controllers which use multi-channel surface MES as inputs to the same controllers which use multi-channel intramuscular MES as inputs. An experiment was designed during which surface and intramuscular MES were collected simultaneously for 10 different classes of isometric contraction. There was no significant difference in classification accuracy as a result of using the intramuscular MES measurement technique when compared to the surface MES measurement technique. Impressive classification accuracy (97%) could be achieved by optimally selecting only three channels of surface MES.
Pattern recognition–based control of myoelectric prostheses has shown great promise in research environments, but has not been optimized for use in a clinical setting. To explore the relationship between classification error, controller delay, and real-time controllability, 13 able-bodied subjects were trained to operate a virtual upper-limb prosthesis using pattern recognition of electromyogram (EMG) signals. Classification error and controller delay were varied by training different classifiers with a variety of analysis window lengths ranging from 50 to 550 ms and either two or four EMG input channels. Offline analysis showed that classification error decreased with longer window lengths (p < 0.01). Real-time controllability was evaluated with the Target Achievement Control (TAC) Test, which prompted users to maneuver the virtual prosthesis into various target postures. The results indicated that user performance improved with lower classification error (p<0.01) and was reduced with longer controller delay (p<0.01), as determined by the window length. Therefore, both of these effects should be considered when choosing a window length; it may be beneficial to increase the window length if this results in a reduced classification error, despite the corresponding increase in controller delay. For the system employed in this study, the optimal window length was found to be between 150 and 250 ms, which is within acceptable controller delays for conventional multi-state amplitude controllers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.