Utilizing the wild-type MIC distribution was found to be as useful in M. tuberculosis as in other bacteria when setting clinical breakpoints. We suggest that the present clinical breakpoints should be re-evaluated, taking into account wild-type MIC distributions and available pharmacokinetic data.
Rapid and accurate drug susceptibility testing (DST) is essential for the treatment of multi- and extensively drug-resistant tuberculosis (M/XDR-TB). We compared the utility of genotypic DST assays with phenotypic DST (pDST) using Bactec 960 MGIT or Löwenstein-Jensen to construct M/XDR-TB treatment regimens for a cohort of 25 consecutive M/XDR-TB patients and 15 possible anti-TB drugs. Genotypic DST results from Cepheid GeneXpert MTB/RIF (Xpert) and line probe assays (LPAs; Hain GenoType MTBDRplus 2.0 and MTBDRsl 2.0) and whole-genome sequencing (WGS) were translated into individual algorithm-derived treatment regimens for each patient. We further analyzed if discrepancies between the various methods were due to flaws in the genotypic or phenotypic test using MIC results. Compared with pDST, the average agreement in the number of drugs prescribed in genotypic regimens ranged from just 49% (95% confidence interval [CI], 39 to 59%) for Xpert and 63% (95% CI, 56 to 70%) for LPAs to 93% (95% CI, 88 to 98%) for WGS. Only the WGS regimens did not contain any drugs to which pDST showed resistance. Importantly, MIC testing revealed that pDST likely underestimated the true rate of resistance for key drugs (rifampin, levofloxacin, moxifloxacin, and kanamycin) because critical concentrations (CCs) were too high. WGS can be used to rule in resistance even in M/XDR strains with complex resistance patterns, but pDST for some drugs is still needed to confirm susceptibility and construct the final regimens. Some CCs for pDST need to be reexamined to avoid systematic false-susceptible results in low-level resistant isolates.
BackgroundDetection of active tuberculosis (TB) before antiretroviral therapy (ART) initiation is important, but optimal diagnostic methods for use in resource-limited settings are lacking. We assessed the prevalence of TB, evaluated the diagnostic yield of Xpert MTB/RIF in comparison with smear microscopy and culture, and the impact of Xpert results on clinical management in HIV-positive adults eligible for ART at health centers in a region of Ethiopia.MethodsParticipants were prospectively recruited and followed up at 5 health centers. Trained nurses collected data on socio-demographic characteristics, medical history and symptoms, and performed physical examination. Two paired morning sputum samples were obtained, and lymph node aspirates in case of lymphadenopathy. Diagnostic yield of Xpert MTB/RIF in sputum was compared with smear microscopy and liquid culture.ResultsTB was diagnosed in 145/812 participants (17.9%), with bacteriological confirmation in 137 (16.9%). Among bacteriologically confirmed cases, 31 were smear-positive (22.6%), 96 were Xpert-positive (70.1%), and 123 were culture-positive (89.8%). Xpert MTB/RIF increased the TB detection rate by 64 cases (47.4%) compared with smear microscopy. The overall sensitivity of Xpert MTB/RIF was 66.4%, and was not significantly lower when testing one compared with two samples. While Xpert MTB/RIF was 46.7% sensitive among patients with CD4 cell counts >200 cells/mm3, this increased to 82.9% in those with CD4 cell counts ≤100 cells/mm3. Compared with Xpert-positive TB patients, Xpert-negative cases had less advanced HIV and TB disease characteristics.ConclusionsPreviously undiagnosed TB is common among HIV-positive individuals managed in Ethiopian health centers. Xpert MTB/RIF increased TB case detection, especially in patients with advanced immunosuppression. An algorithm based on the use of a single morning sputum sample for individuals with negative sputum smear microscopy could be considered for intensified case finding in patients eligible for ART. However, technical and cost-effectiveness issues relevant for low-income countries warrant further study.
Compared to truly negative cultures, false-positive blood cultures not only increase laboratory work but also prolong lengths of patient stay and use of broad-spectrum antibiotics, both of which are likely to increase antibiotic resistance and patient morbidity. The increased patient suffering and surplus costs caused by blood culture contamination motivate substantial measures to decrease the rate of contamination, including the use of dedicated phlebotomy teams. The present study evaluated the effect of a simple informational intervention aimed at reducing blood culture contamination at Skåne University Hospital (SUS), Malmö, Sweden, during 3.5 months, focusing on departments collecting many blood cultures. The main examined outcomes of the study were pre-and postintervention contamination rates, analyzed with a multivariate logistic regression model adjusting for relevant determinants of contamination. A total of 51,264 blood culture sets were drawn from 14,826 patients during the study period (January 2006 to December 2009). The blood culture contamination rate preintervention was 2.59% and decreased to 2.23% postintervention (odds ratio, 0.86; 95% confidence interval, 0.76 to 0.98). A similar decrease in relevant bacterial isolates was not found postintervention. Contamination rates at three auxiliary hospitals did not decrease during the same period. The effect of the intervention on phlebotomists' knowledge of blood culture routines was also evaluated, with a clear increase in level of knowledge among interviewed phlebotomists postintervention. The present study shows that a relatively simple informational intervention can have significant effects on the level of contaminated blood cultures, even in a setting with low rates of contamination where nurses and auxiliary nurses conduct phlebotomies.Blood cultures are commonly contaminated, with contaminated cultures representing as many as 50% of positive cultures (1). Compared to truly negative cultures, false-positive (contaminated) blood cultures not only increase laboratory work but also prolong lengths of patient stay and increase the use of broad-spectrum antibiotics, with negative consequences for antibiotic resistance and patient morbidity. Furthermore, false-positive results can cause confusion regarding antibiotic regimens, endangering patient safety (2, 5, 16).The dominating organism in blood culture contamination, coagulase-negative staphylococcus (CoNS), is also an increasingly important pathogen, which is a significant clinical problem because there is no true "gold standard" for determining contamination from relevant pathogens (1, 8, 13, 22). Although not applicable for clinical use for individual patients, a laboratory assessment definition of contamination for comparison of rates between institutions has been developed. Target rates should not exceed 3% (7), but many teaching hospitals have contamination rates exceeding 6% or more (2,17,21).Considering the potential savings in resource utilization, it is justified to invest considerable reso...
Helicobacter pylori exists in two different morphological forms, spiral and coccoid. This study demonstrated that both forms can infect BALB/c A mice. The animals were inoculated orally three times at 2-day intervals with 10' cfu of both spiral and coccoid forms of strain CCUG 17874 (NCTC 11637), strain 25 and strain 53/93. Infection was followed over a 30-week period by histological scoring of the grade of inflammation in gastric biopsies. At each time point sera were collected for analysis in ELISA and immunoblot analysis. Both spiral and coccoid forms of all H. pylori strains gave significantly higher inflammation scores than a control group of animals 1 week after inoculation. The histological evidence persisted throughout the entire 30 weeks. The inflammation was most severe in the pylorus and duodenum. Infection with strain 553/93 displayed the most severe gastritis. The spiral form of strain CCUG 17874 gave an immune response after only 4 weeks, whereas its coccoid form as well as strains 25 and 5 3 / 9 3 (spiral and coccoid forms) gave a significant increase in antibody response in ELISA and immunoblot after 16 weeks. It is concluded that both spiral and coccoid forms of H. pyluri can cause acute gastritis in BALB/c A mice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.