Imbalance in the regulatory immune mechanisms that control intestinal cellular and bacterial homeostasis may lead to induction of the detrimental inflammatory signals characterized in humans as inflammatory bowel disease. Induction of proinflammatory cytokines (i.e., IL-12) induced by dendritic cells (DCs) expressing pattern recognition receptors may skew naive T cells to T helper 1 polarization, which is strongly implicated in mucosal autoimmunity. Recent studies show the ability of probiotic microbes to treat and prevent numerous intestinal disorders, including Clostridium difficile-induced colitis. To study the molecular mechanisms involved in the induction and repression of intestinal inflammation, the phosphoglycerol transferase gene that plays a key role in lipoteichoic acid (LTA) biosynthesis in Lactobacillus acidophilus NCFM (NCK56) was deleted. The data show that the L. acidophilus LTAnegative in LTA (NCK2025) not only down-regulated IL-12 and TNFα but also significantly enhanced IL-10 in DCs and controlled the regulation of costimulatory DC functions, resulting in their inability to induce CD4 + T-cell activation. Moreover, treatment of mice with NCK2025 compared with NCK56 significantly mitigated dextran sulfate sodium and CD4 + CD45RB high T cell-induced colitis and effectively ameliorated dextran sulfate sodium-established colitis through a mechanism that involves IL-10 and CD4 + FoxP3 + T regulatory cells to dampen exaggerated mucosal inflammation. Directed alteration of cell surface components of L. acidophilus NCFM establishes a potential strategy for the treatment of inflammatory intestinal disorders.antiinflammatory | lactobacilli | Toll-like receptor 2 | innate immunity
This study presents the complete genome sequence of Lactobacillus gasseri ATCC 33323, a neotype strain of human origin and a native species found commonly in the gastrointestinal tracts of neonates and adults. The plasmid-free genome was 1,894,360 bp in size and predicted to encode 1,810 genes. The GC content was 35.3%, similar to the GC content of its closest relatives, L. johnsonii NCC 533 (34%) and L. acidophilus NCFM (34%). Two identical copies of the prophage LgaI (40,086 bp), of the Sfi11-like Siphoviridae phage family, were integrated tandomly in the chromosome. A number of unique features were identified in the genome of L. gasseri that were likely acquired by horizontal gene transfer and may contribute to the survival of this bacterium in its ecological niche. L. gasseri encodes two restriction and modification systems, which may limit bacteriophage infection. L. gasseri also encodes an operon for production of heteropolysaccharides of high complexity. A unique alternative sigma factor was present similar to that of B. caccae ATCC 43185, a bacterial species isolated from human feces. In addition, L. gasseri encoded the highest number of putative mucusbinding proteins (14) among lactobacilli sequenced to date. Selected phenotypic characteristics that were compared between ATCC 33323 and other human L. gasseri strains included carbohydrate fermentation patterns, growth and survival in bile, oxalate degradation, and adhesion to intestinal epithelial cells, in vitro. The results from this study indicated high intraspecies variability from a genome encoding traits important for survival and retention in the gastrointestinal tract.
Lactobacillus acidophilus NCFM is an industrially important strain used extensively as a probiotic culture. Tolerance of the presence of bile is an attribute important to microbial survival in the intestinal tract. A whole-genome microarray was employed to examine the effects of bile on the global transcriptional profile of this strain, with the intention of elucidating genes contributing to bile tolerance. Genes involved in carbohydrate metabolism were generally induced, while genes involved in other aspects of cellular growth were mostly repressed. A 7-kb eight-gene operon encoding a two-component regulatory system (2CRS), a transporter, an oxidoreductase, and four hypothetical proteins was significantly upregulated in the presence of bile. Deletion mutations were constructed in six genes of the operon. Transcriptional analysis of the 2CRS mutants showed that mutation of the histidine protein kinase (HPK) had no effect on the induction of the operon, whereas the mutated response regulator (RR) showed enhanced induction when the cells were exposed to bile. These results indicate that the 2CRS plays a role in bile tolerance and that the operon it resides in is negatively controlled by the RR. Mutations in the transporter, the HPK, the RR, and a hypothetical protein each resulted in loss of tolerance of bile. Mutations in genes encoding another hypothetical protein and a putative oxidoreductase resulted in significant increases in bile tolerance. This functional analysis showed that the operon encoded proteins involved in both bile tolerance and bile sensitivity.
The use of botanicals and dietary supplements derived from natural substances as an adjunct to an improved quality of life or for their purported medical benefits has become increasingly common in the United States. This review addresses the safety assessment and regulation of food products containing these substances by the U.S. Food and Drug Administration (FDA). The issue of safety is particularly critical given how little information is available on the toxicity of some of these products. The first section uses case studies for stevia and green tea extracts as examples of how FDA evaluates the safety of botanical and herbal products submitted for consideration as Generally Recognized as Safe under the Federal Food, Drug, and Cosmetics Act. The 1994 Dietary Supplement Health Education Act (DSHEA) created a regulatory framework for dietary supplements. The article also discusses the regulation of this class of dietary supplements under DSHEA and addresses the FDA experience in analyzing the safety of natural ingredients described in pre-market safety submissions. Lastly, we discuss an ongoing interagency collaboration to conduct safety testing of nominated dietary supplements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.