Soil bacterial communities are altered by anthropogenic drivers such as climate change-related warming and fertilization. However, we lack a predictive understanding of how bacterial communities respond to such global changes. Here, we tested whether phylogenetic information might be more predictive of the response of bacterial taxa to some forms of global change than others. We analysed the composition of soil bacterial communities from perturbation experiments that simulated warming, drought, elevated CO
2
concentration and phosphorus (P) addition. Bacterial responses were phylogenetically conserved to all perturbations. The phylogenetic depth of these responses varied minimally among the types of perturbations and was similar when merging data across locations, implying that the context of particular locations did not affect the phylogenetic pattern of response. We further identified taxonomic groups that responded consistently to each type of perturbation. These patterns revealed that, at the level of family and above, most groups responded consistently to only one or two types of perturbations, suggesting that traits with different patterns of phylogenetic conservation underlie the responses to different perturbations. We conclude that a phylogenetic approach may be useful in predicting how soil bacterial communities respond to a variety of global changes.
This article is part of the theme issue ‘Conceptual challenges in microbial community ecology’.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.