We present the first robust implementation of a coined quantum walk over five steps using only passive optical elements. By employing a fiber network loop we keep the amount of required resources constant as the walker's position Hilbert space is increased. We observed a non-Gaussian distribution of the walker's final position, thus characterizing a faster spread of the photon wave packet in comparison to the classical random walk. The walk is realized for many different coin settings and initial states, opening the way for the implementation of a quantum-walk-based search algorithm.
We demonstrate the first experimental realization of a dispersionless state, in a photonic Lieb lattice formed by an array of optical waveguides. This engineered lattice supports three energy bands, including a perfectly flat middle band with an infinite effective mass. We analyze, both experimentally and theoretically, the evolution of well-prepared flat-band states, and show their remarkable robustness, even in the presence of disorder. The realization of flat-band states in photonic lattices opens an exciting door towards quantum simulation of flat-band models in a highly controllable environment.
We propose a multidimensional quantum information encoding approach based on temporal modulation of single photons, where the Hilbert space can be spanned by an in-principle infinite set of orthonormal temporal profiles. We analyze two specific realizations of such modulation schemes, and show that error rate per symbol can be smaller than 1% for practical implementations. Temporal modulation may enable multidimensional quantum communication over the existing fiber optical infrastructure, as well as provide an avenue for probing high-dimensional entanglement approaching the continuous limit. OCIS codes: (270.5585) Quantum information and processing; (270.5565) Quantum communications.
Master equations govern the time evolution of a quantum system interacting with an environment, and may be written in a variety of forms. Time-independent or memoryless master equations, in particular, can be cast in the well-known Lindblad form. Any time-local master equation, Markovian or non-Markovian, may in fact also be written in a Lindblad-like form. A diagonalisation procedure results in a unique, and in this sense canonical, representation of the equation, which may be used to fully characterize the non-Markovianity of the time evolution. Recently, several different measures of non-Markovianity have been presented which reflect, to varying degrees, the appearance of negative decoherence rates in the Lindblad-like form of the master equation. We therefore propose using the negative decoherence rates themselves, as they appear in the canonical form of the master equation, to completely characterize non-Markovianity. The advantages of this are especially apparent when more than one decoherence channel is present. We show that a measure proposed by Rivas et al. is a surprisingly simple function of the canonical decoherence rates, and give an example of a master equation that is non-Markovian for all times t > 0, but to which nearly all proposed measures are blind. We also give necessary and sufficient conditions for trace distance and volume measures to witness non-Markovianity, in terms of the Bloch damping matrix.
Topological quantum matter can be realized by subjecting engineered systems to time-periodic modulations. In analogy with static systems, periodically driven quantum matter can be topologically classified by topological invariants, whose non-zero value guarantees the presence of robust edge modes. In the high-frequency limit of the drive, topology is described by standard topological invariants, such as Chern numbers. Away from this limit, these topological numbers become irrelevant, and novel topological invariants must be introduced to capture topological edge transport. The corresponding edge modes were coined anomalous topological edge modes, to highlight their intriguing origin. Here we demonstrate the experimental observation of these topological edge modes in a 2D photonic lattice, where these propagating edge states are shown to coexist with a quasi-localized bulk. Our work opens an exciting route for the exploration of topological physics in time-modulated systems operating away from the high-frequency regime.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.