We demonstrate the first experimental realization of a dispersionless state, in a photonic Lieb lattice formed by an array of optical waveguides. This engineered lattice supports three energy bands, including a perfectly flat middle band with an infinite effective mass. We analyze, both experimentally and theoretically, the evolution of well-prepared flat-band states, and show their remarkable robustness, even in the presence of disorder. The realization of flat-band states in photonic lattices opens an exciting door towards quantum simulation of flat-band models in a highly controllable environment.
This paper reviews the recent advancements achieved using ultrafast laser inscription (ULI) that highlight the cross-disciplinary potential of the technology. An overview of waveguide fabrication is provided and the three distinct types of waveguide cross-section architectures that have so far been fabricated in transparent dielectric materials are discussed. The paper focuses on two key emergent technologies driven by ULI processes. First, the recently developed photonic devices, such as compact mode-locked waveguide sources and novel midinfrared waveguide lasers are discussed. Secondly, the phenomenon and applications of selective etching in developing ultrafast laser inscribed structures for compact lab-on-chip devices are elaborated. The review further discusses the conceivable future of ULI in impacting the aforementioned fields.
Laser‐induced thermal effects in optically trapped microspheres and single cells are investigated by quantum dot luminescence thermometry. Thermal spectroscopy has revealed a non‐localized temperature distribution around the trap that extends over tens of micrometers, in agreement with previous theoretical models besides identifying water absorption as the most important heating source. The experimental results of thermal loading at a variety of wavelengths reveal that an optimum trapping wavelength exists for biological applications close to 820 nm. This is corroborated by a simultaneous analysis of the spectral dependence of cellular heating and damage in human lymphocytes during optical trapping. This quantum dot luminescence thermometry demonstrates that optical trapping with 820 nm laser radiation produces minimum intracellular heating, well below the cytotoxic level (43 °C), thus, avoiding cell damage.
The spectral resolution of a dispersive spectrograph is dependent on the width of the entrance slit. This means that astronomical spectrographs trade-off throughput with spectral resolving power. Recently, optical guided-wave transitions known as photonic lanterns have been proposed to circumvent this trade-off, by enabling the efficient reformatting of multimode light into a pseudo-slit which is highly multimode in one axis, but diffraction-limited in the other. Here, we demonstrate the successful reformatting of a telescope point spread function into such a slit using a three-dimensional integrated optical waveguide device, which we name the photonic dicer. Using the CANARY adaptive optics demonstrator on the William Herschel Telescope, and light centred at 1530 nm with a 160 nm FWHM, the device shows a transmission of between 10 and 20% depending upon the type of AO correction applied. Most of the loss is due to the overfilling of the input aperture in poor and moderate seeing. Taking this into account, the photonic device itself has a transmission of 57 ± 4%.We show how a fully-optimised device can be used with AO to provide efficient spectroscopy at high spectral resolution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.