The current status of the use of nanoparticles for photothermal treatments is reviewed in detail. The different families of heating nanoparticles are described paying special attention to the physical mechanisms at the root of the light-to-heat conversion processes. The heating efficiencies and spectral working ranges are listed and compared. The most important results obtained in both in vivo and in vitro nanoparticle assisted photothermal treatments are summarized. The advantages and disadvantages of the different heating nanoparticles are discussed.
Acquiring the temperature of a single living cell is not a trivial task. In this paper, we devise a novel nanothermometer, capable of accurately determining the temperature of solutions as well as biological systems such as HeLa cancer cells. The nanothermometer is based on the temperature-sensitive fluorescence of NaYF(4):Er(3+),Yb(3+) nanoparticles, where the intensity ratio of the green fluorescence bands of the Er(3+) dopant ions ((2)H(11/2) --> (4)I(15/2) and (4)S(3/2) --> (4)I(15/2)) changes with temperature. The nanothermometers were first used to obtain thermal profiles created when heating a colloidal solution of NaYF(4):Er(3+),Yb(3+) nanoparticles in water using a pump-probe experiment. Following incubation of the nanoparticles with HeLa cervical cancer cells and their subsequent uptake, the fluorescent nanothermometers measured the internal temperature of the living cell from 25 degrees C to its thermally induced death at 45 degrees C.
In this study, we report on the remarkable two-photon excited fluorescence efficiency in the "biological window" of CaF(2):Tm(3+),Yb(3+) nanoparticles. On the basis of the strong Tm(3+) ion emission (at around 800 nm), tissue penetration depths as large as 2 mm have been demonstrated, which are more than 4 times those achievable based on the visible emissions in comparable CaF(2):Er(3+),Yb(3+) nanoparticles. The outstanding penetration depth, together with the fluorescence thermal sensitivity demonstrated here, makes CaF(2):Tm(3+),Yb(3+) nanoparticles ideal candidates as multifunctional nanoprobes for high contrast and highly penetrating in vivo fluorescence imaging applications.
In this work, we report the multifunctional character of neodymium-doped LaF₃ core/shell nanoparticles. Because of the spectral overlap of the neodymium emission bands with the transparency windows of human tissues, these nanoparticles emerge as relevant subtissue optical probes. For neodymium contents optimizing the luminescence brightness of Nd³⁺:LaF₃ nanoparticles, subtissue penetration depths of several millimeters have been demonstrated. At the same time, it has been found that the infrared emission bands of Nd³⁺:LaF₃ nanoparticles show a remarkable thermal sensitivity, so that they can be advantageously used as luminescent nanothermometers for subtissue thermal sensing. This possibility has been demonstrated in this work: Nd³⁺:LaF₃ nanoparticles have been used to provide optical control over subtissue temperature in a single-beam plasmonic-mediated heating experiment. In this experiment, gold nanorods are used as nanoheaters while thermal reading is performed by the Nd³⁺:LaF₃ nanoparticles. The possibility of a real single-beam-controlled subtissue hyperthermia process is, therefore, pointed out.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.