Insect herbivores in agroecosystems show a remarkable ability to rapidly adapt to novel forms of environmental stress, including synthetic insecticides (Brevik, et al., 2018). Current data suggest that at least six hundred arthropod species have developed resistance to over three hundred insecticidal active ingredients, with tens of thousands of reports of resistance worldwide, the
“Stay-green” crop phenotypes have been shown to impact drought tolerance and nutritional content of several crops. We aimed to genetically describe and functionally dissect the particular stay-green phenomenon found in chickpeas with a green cotyledon color of mature dry seed and investigate its potential use for improvement of chickpea environmental adaptations and nutritional value. We examined 40 stay-green accessions and a set of 29 BC2F4-5 stay-green introgression lines using a stay-green donor parent ICC 16340 and two Indian elite cultivars (KAK2, JGK1) as recurrent parents. Genetic studies of segregating populations indicated that the green cotyledon trait is controlled by a single recessive gene that is invariantly associated with the delayed degreening (extended chlorophyll retention). We found that the chickpea ortholog of Mendel’s I locus of garden pea, encoding a SGR protein as very likely to underlie the persistently green cotyledon color phenotype of chickpea. Further sequence characterization of this chickpea ortholog CaStGR1 (CaStGR1, for carietinum stay-green gene 1) revealed the presence of five different molecular variants (alleles), each of which is likely a loss-of-function of the chickpea protein (CaStGR1) involved in chlorophyll catabolism. We tested the wild type and green cotyledon lines for components of adaptations to dry environments and traits linked to agronomic performance in different experimental systems and different levels of water availability. We found that the plant processes linked to disrupted CaStGR1 gene did not functionality affect transpiration efficiency or water usage. Photosynthetic pigments in grains, including provitaminogenic carotenoids important for human nutrition, were 2–3-fold higher in the stay-green type. Agronomic performance did not appear to be correlated with the presence/absence of the stay-green allele. We conclude that allelic variation in chickpea CaStGR1 does not compromise traits linked to environmental adaptation and agronomic performance, and is a promising genetic technology for biofortification of provitaminogenic carotenoids in chickpea.
Despite the importance of crop responses to low fertility conditions, few studies have examined the extent to which domestication may have limited crop responses to low-fertility environments in aboveground and belowground traits. Moreover, studies that have addressed this topic have used a limited number of wild accessions, therefore overlooking the genotypic and phenotypic diversity of wild relatives. To examine how domestication has affected the response of aboveground and belowground agronomic traits, we measured root and leaf functional traits in an extensive set of wild and domesticated chickpea accessions grown in low and high nitrogen soil environments. Unlike previous studies, the wild accessions used in this study broadly capture the genetic and phenotypic diversity of domesticated chickpea’s (Cicer arietinum) closest compatible wild relative (C. reticulatum). Our results suggest that the domestication of chickpea led to greater capacities for plasticity in morphological and biomass related traits but may have lowered the capacity to modify physiological traits related to gas exchange. Wild chickpea displayed greater phenotypic plasticity for physiological traits including stomatal conductance, canopy level photosynthesis, leaf level photosynthesis, and leaf C/N ratio. In contrast to domesticated chickpea, wild chickpea displayed phenotypes consistent with water loss prevention, by exhibiting lower specific leaf area, stomatal conductance and maintaining efficient water-use. In addition to these general patterns, our results indicate that the domestication dampened the variation in response type to higher nitrogen environments for belowground and aboveground traits, which suggests reduced genetic diversity in current crop germplasm collections.
Crop rotations and intercropping are an ever‐present sustainable practice across a diverse array of agroecosystems. These management practices can suppress weeds, reduce cycles of disease, build soil organic matter, and increase above‐ and belowground biodiversity, all of which improve the yield of a companion or subsequent crop. Here, we propose the terms ‘rotational’ and ‘intercropping value’ as a way to measure the overall effect of these benefits. Additionally, we articulate how to quantify different ecosystem services provided by rotational and intercrops including weed and disease suppression, enhancing microbial communities, and nitrogen fixation using a framework that accounts for how these services support other crops in agroecosystems. By providing a method of identifying and quantifying these rotational and intercropping traits, it may facilitate the breeding of better crops for rotations, for cover cropping, and for intercropping.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.