Enhancement of the late Na+ current (INaL) increases arrhythmia propensity in the heart, while suppression of the current is antiarrhythmic. GS967 is an agent considered as a selective blocker of INaL. In the present study, effects of GS967 on INaL and action potential (AP) morphology were studied in canine ventricular myocytes by using conventional voltage clamp, action potential voltage clamp and sharp microelectrode techniques. The effects of GS967 (1 µM) were compared to those of the class I/B antiarrhythmic compound mexiletine (40 µM). Under conventional voltage clamp conditions, INaL was significantly suppressed by GS967 and mexiletine, causing 80.4 ± 2.2% and 59.1 ± 1.8% reduction of the densities of INaL measured at 50 ms of depolarization, and 79.0 ± 3.1% and 63.3 ± 2.7% reduction of the corresponding current integrals, respectively. Both drugs shifted the voltage dependence of the steady-state inactivation curve of INaL towards negative potentials. GS967 and mexiletine dissected inward INaL profiles under AP voltage clamp conditions having densities, measured at 50% of AP duration (APD), of −0.37 ± 0.07 and −0.28 ± 0.03 A/F, and current integrals of −56.7 ± 9.1 and −46.6 ± 5.5 mC/F, respectively. Drug effects on peak Na+ current (INaP) were assessed by recording the maximum velocity of AP upstroke (V+max) in multicellular preparations. The offset time constant was threefold faster for GS967 than mexiletine (110 ms versus 289 ms), while the onset of the rate-dependent block was slower in the case of GS967. Effects on beat-to-beat variability of APD was studied in isolated myocytes. Beat-to-beat variability was significantly decreased by both GS967 and mexiletine (reduction of 42.1 ± 6.5% and 24.6 ± 12.8%, respectively) while their shortening effect on APD was comparable. It is concluded that the electrophysiological effects of GS967 are similar to those of mexiletine, but with somewhat faster offset kinetics of V+max block. However, since GS967 depressed V+max and INaL at the same concentration, the current view that GS967 represents a new class of drugs that selectively block INaL has to be questioned and it is suggested that GS967 should be classified as a class I/B antiarrhythmic agent.
Certain innovative technologies applied to medical product development require novel evaluation approaches and/or regulations. Horizon scanning for such technologies will help regulators prepare, allowing earlier access to the product for patients and an improved benefit/risk ratio. This study investigates whether citation network analysis and text mining of scientific papers could be a tool for horizon scanning in the field of immunology, which has developed over a long period, and attempts to grasp the latest research trends. As the result of the analysis, the academic landscape of the immunology field was identified by classifying 90,450 papers (obtained from PubMED) containing the keyword “immune* and t lymph*” into 38 clusters. The clustering was indicative of the research landscape of the immunology field. To confirm this, immune checkpoint inhibitors were used as a retrospective test topic of therapeutics with new mechanisms of action. Retrospective clustering around immune checkpoint inhibitors was found, supporting this approach. The analysis of the research trends over the last 3 to 5 years in this field revealed several candidate topics, including ARID1A gene mutation, CD300e, and tissue resident memory T cells, which shows notable progress and should be monitored for future possible product development. Our results have demonstrated the possibility that citation network analysis and text mining of scientific papers can be a useful objective tool for horizon scanning of life science fields such as immunology.
Funding Acknowledgements Type of funding sources: Public grant(s) – EU funding. Main funding source(s): National Research, Development and Innovation Office New National Excellence Programme Enhancement of the late Na+ current (INa,late) increases arrhythmia propensity in the heart, while suppression of the current is antiarrhythmic. GS-458967 (GS) is an agent considered to be a selective blocker of INa,late. In the present study, effects of GS967 on INa,late, on L-type calcium current (ICaL), and on action potential (AP) morphology were studied in canine ventricular myocytes by using conventional voltage clamp, action potential voltage clamp and sharp microelectrode techniques. These effects of GS were compared to tetrodotoxin (TTX) and to the class I/B antiarrhythmic compound mexiletine. GS (1 μM), mexiletine (40 μM) and TTX (10 μM) dissected largely similarly shaped inward currents under action potential voltage clamp conditions. In case of GS and mexiletine, the amplitude and integral of this inward current was significantly smaller when measured in the presence of 1 μM nisoldipine, while no difference was observed in case of TTX. Under conventional voltage clamp conditions, INa,late was significantly reduced by 1 μM GS and 40 μM mexiletine (about 79% and 63% reduction of current integrals, respectively). The integral of ICa,L was moderately but significantly decreased by both drugs (reduction of 9% and 14%, respectively). These changes were associated with a faster inactivation of ICa,L. Drug effects on early Na+ current (INa,early) were assessed by analyzing the maximal rate of depolarization (V + max) in multicellular preparations. Both GS and mexiletine showed fast onset and offset kinetics: 110 ms and 289 ms offset time constants, respectively, as determined from V + max measurements in right ventricular papillary muscles, while the onset kinetics was characterized by 5.3 AP and 2.6 AP lengths, respectively, at 2.5 Hz. Effects on beat-to-beat variability of AP duration (APD) was studied in isolated myocytes. Short-term variability was significantly decreased by both GS and mexiletine (average reduction of 42% and 24%, respectively) while they caused similar shortening of the APD. The electrophysiological effects of GS are similar to those of mexiletine, but with a somewhat faster offset kinetics of V + max block. However, since GS reduced V+ max and INa,late in the same concentration, the currently accepted view that GS that selectively blocks INa,late has to be questioned and it is suggested that GS should be classified as a class I/B (or I/B + IV) antiarrhythmic agent.
Enhancement of the late Na+ current (INaL) increases arrhythmia propensity in the heart, while suppression of the current is antiarrhythmic. GS967 is an agent considered as a selective blocker of INaL. In the present study, effects of GS967 on INaL, on L-type calcium current (ICa), and on action potential (AP) morphology were studied in canine ventricular myocytes by using conventional voltage clamp, action potential voltage clamp and sharp microelectrode techniques. These effects of GS967 were compared to tetrodotoxin (TTX) and to the class I/B antiarrhythmic compound mexiletine. 1 µM GS967, 40 µM mexiletine, and 10 µM TTX dissected largely similarly shaped inward currents under action potential voltage clamp conditions. In case of GS967 and mexiletine, the amplitude and integral of this current was significantly smaller when measured in the presence of 1 µM nisoldipine, while no difference was observed in case of TTX. Under conventional voltage clamp conditions, INaL was significantly decreased by 1 µM GS967 and 40 µM mexiletine (79.0±3.0% and 63.3±2.7% reduction of current integrals, respectively). The integral of ICa was moderately but significantly diminished by both drugs (reduction of 9.3±3.3% and 14.1±1.5%, respectively). These changes were associated with acceleration of inactivation of ICa. Drug effects on peak Na+ current (INaP) were also assessed by recording AP upstroke in multicellular preparations. Both GS967 and mexiletine showed fast onset and offset kinetics: 110 ms and 289 ms offset time constants, respectively, as determined from V+max measurements in right ventricular papillary muscles, while the onset kinetics was characterized by 5.3 AP and 2.6 AP, respectively, at 2.5 Hz. Effects on beat-to-beat variability of AP duration (APD) was studied in isolated myocytes. Beat-to-beat variability was significantly decreased by both GS967 and mexiletine (reduction of 42.1±6.5% and 24.6±12.8%, respectively) while their shortening effect on APD was comparable. It is concluded that the electrophysiological effects of GS967 are similar to those of mexiletine, but with somewhat faster offset kinetics of V+max block. However, since GS967 depressed V+max and INaL at the same concentration, the current view that GS967 represents a new class of drugs that selectively block INaL has to be questiond and it is suggested that GS967 should be classified as a class I/B (or I/B + IV) antiarrhythmic agent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.