A current problem in microfluidics is that poly(dimethylsiloxane) (PDMS), used to fabricate many microfluidic devices, is not compatible with most organic solvents. Fluorinated compounds are more chemically robust than PDMS but, historically, it has been nearly impossible to construct valves out of them by multilayer soft lithography (MSL) due to the difficulty of bonding layers made of ''non-stick'' fluoropolymers necessary to create traditional microfluidic valves. With our new three-dimensional (3D) valve design we can fabricate microfluidic devices from fluorinated compounds in a single monolithic layer that is resistant to most organic solvents with minimal swelling. This paper describes the design and development of 3D microfluidic valves by molding of a perfluoropolyether, termed Sifel, onto printed wax molds. The fabrication of Sifel-based microfluidic devices using this technique has great potential in chemical synthesis and analysis.
The goal of this work was to increase the sensitivity of a UV-Vis spectrophotometer by decreasing the background noise and lengthening the optical path. A microphotometer has been modified to precisely select very small parts of a microfluidic channel pattern of a chip and to measure light absorbance on a magnified area of the selected part of the channel. The viability of combining a projection microscope and a spectrophotometer for external absorbance measurements on disposable PDMS chips was studied. Besides the external direct detection above a microfluidic channel, the optical pathlength was lengthened by detecting in the region of the perpendicular exit port. Increasing the cross-sectional area of the zone of irradiation improved the signal-to-noise ratio and the limits of detection (LOD).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.