Finite element (FE) simplified micro-modeling techniques are commonly used to investigate and predict the mechanical behavior of masonry structures because they provide a good compromise between accuracy and computational cost. These FE techniques generally discretize masonry structural elements into expanded masonry units and zero-thickness interface joints of assumed known locations. These joints correspond to actual masonry joints and to preferential cracking surfaces, which are often placed vertically in the middle of the expanded masonry units to simulate the cracking mechanisms that are typically observed in masonry bricks and blocks. Three different versions of simplified micromodels (SMMs) are widely used in the literature to model the response of masonry walls and assemblies: SMMs with rigid, elastic, and elasto-plastic constitutive models for the expanded masonry units. All SMMs are based on the hypothesis that the masonry inelastic behavior and cracking are concentrated along the pre-defined zero-thickness interface joints. The hypothesis is often satisfied for ordinary masonry, in which masonry units are generally stronger than the masonry joints, i.e., mortar and unit-mortar interface. However, this hypothesis is not always satisfied for historical masonry with units of irregular shapes or for earth block masonry, in which masonry units and masonry joint can have similar mechanical properties. This paper highlights the capabilities and limitations of SMM techniques by comparing the experimentally-measured and numerically-simulated response of ordinary and earth block masonry walls, for which well-documented experimental results are available in the literature. It is found that SMMs can properly reproduce the mechanical behavior of masonry when the masonry units are significantly stronger than the masonry joints; however, SMMs produce poor estimates of the mechanical response when this hypothesis is not satisfied. This finding highlights the need to develop more general FE models to investigate the mechanical behavior of different masonry materials and construction techniques, as well as to identify the parameters controlling the cracking patterns and the conditions under which SMM techniques can be accurately use.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.