Summary Truncating variants in exons 33 and 34 of the SNF2-related CREBBP activator protein ( SRCAP ) gene cause the neurodevelopmental disorder (NDD) Floating-Harbor syndrome (FLHS), characterized by short stature, speech delay, and facial dysmorphism. Here, we present a cohort of 33 individuals with clinical features distinct from FLHS and truncating (mostly de novo ) SRCAP variants either proximal (n = 28) or distal (n = 5) to the FLHS locus. Detailed clinical characterization of the proximal SRCAP individuals identified shared characteristics: developmental delay with or without intellectual disability, behavioral and psychiatric problems, non-specific facial features, musculoskeletal issues, and hypotonia. Because FLHS is known to be associated with a unique set of DNA methylation (DNAm) changes in blood, a DNAm signature, we investigated whether there was a distinct signature associated with our affected individuals. A machine-learning model, based on the FLHS DNAm signature, negatively classified all our tested subjects. Comparing proximal variants with typically developing controls, we identified a DNAm signature distinct from the FLHS signature. Based on the DNAm and clinical data, we refer to the condition as “non-FLHS SRCAP -related NDD.” All five distal variants classified negatively using the FLHS DNAm model while two classified positively using the proximal model. This suggests divergent pathogenicity of these variants, though clinically the distal group presented with NDD, similar to the proximal SRCAP group. In summary, for SRCAP , there is a clear relationship between variant location, DNAm profile, and clinical phenotype. These results highlight the power of combined epigenetic, molecular, and clinical studies to identify and characterize genotype-epigenotype-phenotype correlations.
Purpose: MED12 is a subunit of the Mediator multiprotein complex with a central role in RNA polymerase II transcription and regulation of cell growth, development, and differentiation. This might underlie the variable phenotypes in males carrying missense variants in MED12, including X-linked recessive Ohdo-, Lujan-, and FG syndromes. Methods: By international matchmaking we assembled variant and clinical data on 18 females presenting with variable neurodevelopmental disorders (NDDs) and harboring de novo variants in MED12.Results: Five nonsense variants clustered in the C-terminal region, two splice variants were found in the same exon 8 splice acceptor site, and 11 missense variants were distributed over the gene/protein. Protein truncating variants were associated with a severe, syndromic phenotype consisting of intellectual disability (ID), facial dysmorphism, short stature, skeletal abnormalities, feeding difficulties and variable other abnormalities. De novo missense variants were associated with a less specific, but homogeneous phenotype including severe ID, autistic features, limited speech and variable other anomalies, overlapping both with females with truncating variants as well as males with missense variants. Conclusion:We establish de novo truncating variants in MED12 as causative for a distinct NDD and de novo missense variants as causative for a severe, less specific NDD in females.
Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
RASopathies are caused by variants in genes encoding components or modulators of the RAS/MAPK signaling pathway. Noonan syndrome is the most common entity among this group of disorders and is characterized by heart defects, short stature, variable developmental delay, and typical facial features. Heterozygous variants in SOS2, encoding a guanine nucleotide exchange factor for RAS, have recently been identified in patients with Noonan syndrome. The number of published cases with SOS2-related Noonan syndrome is still limited and little is known about genotype-phenotype correlations. We collected previously unpublished clinical and genotype data from 17 individuals carrying a diseasecausing SOS2 variant. Most individuals had one of the previously reported dominant pathogenic variants; only four had novel changes at the established hotspots for variants that affect protein function. The overall phenotype of the 17 patients fits well into the spectrum of Noonan syndrome and is most similar to the phenotype observed in patients with SOS1-related Noonan syndrome, with ectodermal anomalies as common features and short stature and learning disabilities as relatively infrequent findings compared to the average Noonan syndrome phenotype. The spectrum of heart defects in SOS2-related Noonan syndrome was consistent with the known spectrum of cardiac anomalies in RASopathies, but no specific heart defect was particularly predominating. Notably, lymphatic anomalies were extraordinarily frequent, affecting more than half of the patients. We therefore conclude that SOS2-related Noonan syndrome is associated with a particularly high risk of lymphatic complications that may have a significant impact on morbidity and quality of life.
Noonan syndrome spectrum disorders are a group of phenotypically related conditions, resembling Noonan syndrome, caused by germline pathogenic variants in genes within the Ras/mitogen-activated protein kinase (Ras/MAPK) signalling pathway. Lymphatic dysplasia with a clinical lymphatic abnormality is one of the major features. We performed a systematic review to get more insight in (1) the prevalence of clinically lymphatic abnormalities in patients with a genetically proven Noonan syndrome spectrum disorder, (2) if a genotype-lymphatic phenotype relation can be found and describe the clinical presentation and course of the lymphatic abnormality. Most studies report patients with Noonan syndrome. Prenatally, the prevalence of increased nuchal translucency differs from 7% in patients with pathogenic <i>PTPN11</i> variant<i>s</i> to 38% in patients with pathogenic <i>RIT1</i> variants, and the prevalence of pleural effusions differed from 7% in patients with pathogenic <i>SOS1</i> to 29% in patients with pathogenic <i>RIT1</i> variants. Postnatally, the prevalence of lymphedema differs from 16% in patients with pathogenic <i>PTPN11</i> variants to 44% in patients with pathogenic <i>SOS1</i> variants, and the prevalence of acquired chylothorax is 4% in patients with pathogenic <i>RIT1</i> variants. Lymphatic abnormalities do occur in patients with cardiofaciocutaneous syndrome and Costello syndrome. In conclusion, Noonan syndrome spectrum disorders, Noonan syndrome in particular, are associated with lymphatic abnormalities. Combining the available published literature about genetically proven Noonan syndrome spectrum disorders, it appears likely that the lifetime prevalence of these abnormalities in Noonan syndrome is higher than the 20% that were generally accepted so far. This is increasingly important, because the activation of the RAS/MAPK pathway can be inhibited by RAS/MAPK inhibitors, and clinically severe lymphatic abnormalities may improve.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.