PURPOSE The immunogenicity and reactogenicity of SARS-CoV-2 vaccines in patients with cancer are poorly understood. METHODS We performed a prospective cohort study of adults with solid-organ or hematologic cancers to evaluate anti–SARS-CoV-2 immunoglobulin A/M/G spike antibodies, neutralization, and reactogenicity ≥ 7 days following two doses of mRNA-1273, BNT162b2, or one dose of Ad26.COV2.S. We analyzed responses by multivariate regression and included data from 1,638 healthy controls, previously reported, for comparison. RESULTS Between April and July 2021, we enrolled 1,001 patients; 762 were eligible for analysis (656 had neutralization measured). mRNA-1273 was the most immunogenic (log10 geometric mean concentration [GMC] 2.9, log10 geometric mean neutralization titer [GMT] 2.3), followed by BNT162b2 (GMC 2.4; GMT 1.9) and Ad26.COV2.S (GMC 1.5; GMT 1.4; P < .001). The proportion of low neutralization (< 20% of convalescent titers) among Ad26.COV2.S recipients was 69.9%. Prior COVID-19 infection (in 7.1% of the cohort) was associated with higher responses ( P < .001). Antibody titers and neutralization were quantitatively lower in patients with cancer than in comparable healthy controls, regardless of vaccine type ( P < .001). Receipt of chemotherapy in the prior year or current steroids were associated with lower antibody levels and immune checkpoint blockade with higher neutralization. Systemic reactogenicity varied by vaccine and correlated with immune responses ( P = .002 for concentration, P = .016 for neutralization). In 32 patients who received an additional vaccine dose, side effects were similar to prior doses, and 30 of 32 demonstrated increased antibody titers (GMC 1.05 before additional dose, 3.17 after dose). CONCLUSION Immune responses to SARS-CoV-2 vaccines are modestly impaired in patients with cancer. These data suggest utility of antibody testing to identify patients for whom additional vaccine doses may be effective and appropriate, although larger prospective studies are needed.
Recently, circularly polarized luminescence (CPL)-active systems have become a very hot and interesting subject in chirality- and optics-related areas. The CPL-active systems are usually available by two approaches: covalently combining a luminescent centre to chiral motif or associating the guest of luminescent probe to a chiral host. However, all the chiral components in CPL materials were organic, although the luminescent components were alternatively organics or inorganics. Herein, the first totally inorganic CPL-active system by "luminescent guest-chiral host" strategy is proposed. Luminescent sub-10 nm lanthanide oxides (Eu O or Tb O ) nanoparticles (guests) were encapsulated into chiral non-helical SiO nanofibres (host) through calcination of chiral SiO hybrid nanofibres, trapping Eu (or Tb ). These lanthanide oxides display circular dichroism (CD) optical activity in the ultraviolet wavelength and CPL signals around at 615 nm for Eu and 545 nm for Tb . This work has implications for inorganic-based CPL-active systems by incorporation of various luminescent guests within chiral inorganic hosts.
The prokaryotic ubiquitous Toxin-Antitoxin (TA) operons encode a stable toxin and an unstable antitoxin. The most accepted hypothesis of the physiological function of the TA system is the reversible cessation of cellular growth under stress conditions. The major TA family, VapBC is present in the spirochaete Leptospira interrogans. VapBC modules are classified based on the presence of a predicted ribonucleasic PIN domain in the VapC toxin. The expression of the leptospiral VapC in E. coli promotes a strong bacterial growth arrestment, making it difficult to express the recombinant protein. Nevertheless, we showed that long term induction of expression in E. coli enabled the recovery of VapC in inclusion bodies. The recombinant protein was successfully refolded by high hydrostatic pressure, providing a new method to obtain the toxin in a soluble and active form. The structural integrity of the recombinant VapB and VapC proteins was assessed by circular dichroism spectroscopy. Physical interaction between the VapC toxin and the VapB antitoxin was demonstrated in vivo and in vitro by pull down and ligand affinity blotting assays, respectively, thereby indicating the ultimate mechanism by which the activity of the toxin is regulated in bacteria. The predicted model of the leptospiral VapC structure closely matches the Shigella's VapC X-ray structure. In agreement, the ribonuclease activity of the leptospiral VapC was similar to the activity described for Shigella's VapC, as demonstrated by the cleavage of tRNAfMet and by the absence of unspecific activity towards E. coli rRNA. This finding suggests that the cleavage of the initiator transfer RNA may represent a common mechanism to a larger group of bacteria and potentially configures a mechanism of post-transcriptional regulation leading to the inhibition of global translation.
Patients with cancer are more likely to have impaired immune responses to SARS-CoV-2 vaccines. We study the breadth of responses against SARS-CoV-2 variants after primary vaccination in 178 patients with a variety of tumor types and after booster doses in a subset. Neutralization of alpha, beta, gamma, and delta SARS-CoV-2 variants is impaired relative to wildtype, regardless of vaccine type. Regardless of viral variant, mRNA1273 is the most immunogenic, followed by BNT162b2, and then Ad26.COV2.S. Neutralization of more variants (breadth) is associated with a greater magnitude of wildtype neutralization, and increases with time since vaccination; advancing age associates with a lower breadth. The concentrations of anti-spike protein antibody are a good surrogate for breadth (positive predictive value of =90% at >1,000 U/mL). Booster SARS-CoV-2 vaccines confer enhanced breadth. These data suggest that achieving a high antibody titer is desirable to achieve broad neutralization; a single booster dose with the current vaccines increases the breadth of responses against variants.
Patients with metastatic triple-negative breast cancer have a poor prognosis. Sacituzumab govitecan (IMMU-132) is an antibody-drug conjugate that contains the irinotecan active metabolite, SN-38, linked to a humanized monoclonal antibody targeting trophoblast cell surface antigen 2, which is overexpressed in many solid tumors. In a basket design phase I/II study, sacituzumab govitecan demonstrated promising single-agent therapeutic activity in multiple cancer cohorts, leading to accelerated approval by the U.S. Food and Drug Administration of sacituzumab govitecan-hziy (TRODELVY) for the treatment of patients with metastatic triple-negative breast cancer who had received at least two prior therapies in
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.