The quantum simulation of quantum chemistry is a promising application of quantum computers. However, for N molecular orbitals, the $${\mathcal{O}}({N}^{4})$$ O ( N 4 ) gate complexity of performing Hamiltonian and unitary Coupled Cluster Trotter steps makes simulation based on such primitives challenging. We substantially reduce the gate complexity of such primitives through a two-step low-rank factorization of the Hamiltonian and cluster operator, accompanied by truncation of small terms. Using truncations that incur errors below chemical accuracy allow one to perform Trotter steps of the arbitrary basis electronic structure Hamiltonian with $${\mathcal{O}}({N}^{3})$$ O ( N 3 ) gate complexity in small simulations, which reduces to $${\mathcal{O}}({N}^{2})$$ O ( N 2 ) gate complexity in the asymptotic regime; and unitary Coupled Cluster Trotter steps with $${\mathcal{O}}({N}^{3})$$ O ( N 3 ) gate complexity as a function of increasing basis size for a given molecule. In the case of the Hamiltonian Trotter step, these circuits have $${\mathcal{O}}({N}^{2})$$ O ( N 2 ) depth on a linearly connected array, an improvement over the $${\mathcal{O}}({N}^{3})$$ O ( N 3 ) scaling assuming no truncation. As a practical example, we show that a chemically accurate Hamiltonian Trotter step for a 50 qubit molecular simulation can be carried out in the molecular orbital basis with as few as 4000 layers of parallel nearest-neighbor two-qubit gates, consisting of fewer than 105 non-Clifford rotations. We also apply our algorithm to iron–sulfur clusters relevant for elucidating the mode of action of metalloenzymes.
We describe an iterative formalism to compute influence functionals that describe the general quantum dynamics of a subsystem beyond the assumption of linear coupling to a quadratic bath. We use a space-time tensor network representation of the influence functional and investigate its approximability in terms of the bond dimensions and time-like entanglement in the tensor network description. We study two numerical models, the spin-boson model and a model of interacting hard-core bosons in a 1D harmonic trap. We find that the influence functional and the intermediates involved in its construction can be efficiently approximated by low bond dimension tensor networks in certain dynamical regimes, which allows the quantum dynamics to be accurately computed for longer times than with direct time evolution methods. However, as one iteratively integrates out the bath, the correlations in the influence functional can first increase before decreasing, indicating that the final compressibility of the influence functional is achieved via non-trivial cancellation.
In the version of this Comment originally published online, the final sentence in Box 1 contained the erroneous text "numbers and stochastic"; it has now been removed.
Miniaturization of optical spectrometers has a significant practical value as it can enable compact, affordable spectroscopic systems for chemical and biological sensing applications. For many applications, the spectrometer must gather light from sources that span a wide range of emission angles and wavelengths. Here, we report a lens-free spectrometer that is simultaneously compact (<0.6 cm3), of high resolution (<1 nm), and has a clear aperture (of 10×10 mm). The wavelength-scale pattern in the dispersive element strongly diffracts the input light to produce non-paraxial mid-field diffraction patterns that are then recorded using an optimally matched image sensor and processed to reconstruct the spectrum.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.