Mesenchymal stem cells (MSCs) have the ability to differentiate into a variety of lineages and to renew themselves without malignant changes, and thus hold potential for many clinical applications. However, it has not been well characterized how different the properties of MSCs are depending on the tissue source in which they resided. We previously reported a novel technique for the prospective MSC isolation from bone marrow, and revealed that a combination of cell surface markers (LNGFR and THY-1) allows the isolation of highly enriched MSC populations. In this study, we isolated LNGFR+ THY-1 + MSCs from synovium using flow cytometry. The results show that the synovium tissue contained a significantly larger percentage of LNGFR + THY-1 + MSCs. We examined the colony formation and differentiation abilities of bone marrow-derived MSCs (BM-MSCs) and synovium-derived MSCs (SYN-MSCs) isolated from the same patients. Both types of MSCs exhibited a marked propensity to differentiate into specific lineages. BM-MSCs were preferentially differentiated into bone, while in the SYN-MSC culture, enhanced adipogenic and chondrogenic differentiation was observed. These data suggest that the tissue from which MSCs are isolated should be tailored according to their intended clinical therapeutic application.
Mesenchymal stem/stromal cells (MSCs), which reside in the bone marrow (BM) and various other tissues, can self-renew and differentiate into mesenchymal lineages. Many groups have harvested rat MSCs (rMSCs) from rat BM (rBM) by using a flush-out procedure and have evaluated surface marker expression after long-term culture. However, MSCs gradually differentiate during expansion and exhibit altered proliferation rates, morphological features and functions in vitro. Variations in MSC isolation methods may alter the effectiveness of therapeutic applications. Here, on the basis of CD29 (Itgb1) and CD54 (Icam1) expression, we prospectively isolated a population with a high colony-forming ability and multi-lineage potential from the rBM, and we demonstrated that most of these cells expressed CD73. Successful engraftment of rMSCs was achieved by using a fluorescence-conjugated anti-CD73 antibody. In humans and mice, MSCs were also purified by CD73, thus suggesting that CD73 may serve as a universal marker for prospective isolation of MSCs. Our results may facilitate investigations of MSC properties and function.
IntroductionThe anterior cruciate ligament (ACL) consists of various components, such as collagen, elastin fibres, and fibroblasts. Because ACL has a poor regenerative ability, ACL reconstruction need require the use of autologous tendons. In recent years, tissue-resident stem cells have been studied to promote ACL regeneration as an alternatively method. However, the existence of stem cells in ligaments has not been clearly defined. Here, we prospectively isolated stem cells from ACLs and characterized their properties.MethodsACLs from 11 donors and bone marrows (BM) from 8 donors were obtained with total knee arthroplasty. We used flow cytometry to screen the cell surface markers on ACL cells. Frozen sections were prepared from patient ACL tissues and stained with specific antibodies. Cultured ACL-derived and BM-derived cells at passage 3 were differentiated into adipocytes, osteoblasts and tendon/ligament cells.ResultsACL-derived mesenchymal stem/stromal cells (ACL-MSCs) expressed high levels of CD73 and CD90. Immunohistochemical analyses revealed that ACL-MSCs were located on the inner surface of ACL sinusoids. Furthermore, the expression of cell surface antigens was clearly different between ACL-MSCs and bone marrow (BM)-derived MSCs (BM-MSCs) at the time of isolation, but the two cell populations became indistinguishable after long-term culture. Interestingly, ACL-MSCs are markedly different from BM-MSCs in their differentiation ability and have a high propensity to differentiate into ligament-committed cells.ConclusionsOur findings suggest that ACL-MSCs express CD90 and CD73 markers, and their differentiation capacity is maintained even through culture. The cell population having tissue-specific properties is an important research target for investigating the ligament therapies.
Somatic stem cells have been isolated from multiple human tissues for their potential usefulness in cell therapy. Currently, mesenchymal stromal cells (MSCs) are prepared after several passages requiring a few months of cell culture. In this study, we used a prospective isolation method of somatic stem cells from gestational or fat tissues, which were identified using CD73 antibody. CD73-positive population from various tissues existed individually in flowcytometric pattern, especially subcutaneous fat- and amniotic-derived cells showed the highest enrichment of CD73-positive cells. Moreover, the cell populations isolated with the prospective method showed higher proliferative capacity and stem cell marker expression, compared to the cell populations which isolated through several passages of culturing whole living cells: which we named “conventional method” in this paper. Furthermore, the therapeutic potential of CD73-positive cells was evaluated in vivo using a mouse model of pulmonary fibrosis. After intranasal administration, murine CD73-positive cells reduced macrophage infiltration and inhibited fibrosis development. These results suggest that further testing using CD73-positive cells may be beneficial to help establish the place in regenerative medicine use.
The current process of meat production using livestock has significant effects on the global environment, including high emissions of greenhouse gases. In recent years, cultured meat has attracted attention as a way to acquire animal proteins. However, the lack of markers that isolate proliferating cells from bovine tissues and the complex structure of the meat make it difficult to culture meat in a dish. In this study, we screened 246 cell-surface antibodies by fluorescence-activated cell sorting for their capacity to form colonies and their suitability to construct spheroid “meat buds”. CD29+ cells (Ha2/5 clone) have a high potency to form colonies and efficiently proliferate on fibronectin-coated dishes. Furthermore, the meat buds created from CD29+ cells could differentiate into muscle and adipose cells in a three-dimensional structure. The meat buds embedded in the collagen gel proliferated in the matrix and formed large aggregates. Approximately 10 trillion cells can theoretically be obtained from 100 g of bovine tissue by culturing and amplifying them using these methods. The CD29+ cell characteristics of bovine tissue provide insights into the production of meat alternatives in vitro.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.