Mesenchymal stem cells (MSCs) have the ability to differentiate into a variety of lineages and to renew themselves without malignant changes, and thus hold potential for many clinical applications. However, it has not been well characterized how different the properties of MSCs are depending on the tissue source in which they resided. We previously reported a novel technique for the prospective MSC isolation from bone marrow, and revealed that a combination of cell surface markers (LNGFR and THY-1) allows the isolation of highly enriched MSC populations. In this study, we isolated LNGFR+ THY-1 + MSCs from synovium using flow cytometry. The results show that the synovium tissue contained a significantly larger percentage of LNGFR + THY-1 + MSCs. We examined the colony formation and differentiation abilities of bone marrow-derived MSCs (BM-MSCs) and synovium-derived MSCs (SYN-MSCs) isolated from the same patients. Both types of MSCs exhibited a marked propensity to differentiate into specific lineages. BM-MSCs were preferentially differentiated into bone, while in the SYN-MSC culture, enhanced adipogenic and chondrogenic differentiation was observed. These data suggest that the tissue from which MSCs are isolated should be tailored according to their intended clinical therapeutic application.
Mesenchymal stem/stromal cells (MSCs), which reside in the bone marrow (BM) and various other tissues, can self-renew and differentiate into mesenchymal lineages. Many groups have harvested rat MSCs (rMSCs) from rat BM (rBM) by using a flush-out procedure and have evaluated surface marker expression after long-term culture. However, MSCs gradually differentiate during expansion and exhibit altered proliferation rates, morphological features and functions in vitro. Variations in MSC isolation methods may alter the effectiveness of therapeutic applications. Here, on the basis of CD29 (Itgb1) and CD54 (Icam1) expression, we prospectively isolated a population with a high colony-forming ability and multi-lineage potential from the rBM, and we demonstrated that most of these cells expressed CD73. Successful engraftment of rMSCs was achieved by using a fluorescence-conjugated anti-CD73 antibody. In humans and mice, MSCs were also purified by CD73, thus suggesting that CD73 may serve as a universal marker for prospective isolation of MSCs. Our results may facilitate investigations of MSC properties and function.
BackgroundSynovial mesenchymal stem cells (MSCs) are an attractive cell source for cartilage and meniscus regeneration. Synovial tissue can be histologically classified into three regions; surface, stromal and perivascular region, but the localization of synovial MSCs has not been fully investigated. We identified markers specific for each region, and compared properties of MSCs derived from each region in the synovium.MethodsThe intensity of immunostaining with 19 antibodies was examined for surface, stromal, and perivascular regions of human synovium from six osteoarthritis patients. Specific markers were identified and synovial cells derived from each region were sorted. Proliferation, surface marker expression, chondrogenesis, calcification and adipogenesis potentials were compared in synovial MSCs derived from the three regions.ResultsWe selected CD55+ CD271− for synovial cells in the surface region, CD55− CD271− in the stromal region, and CD55− CD271+ in the perivascular region. The ratio of the sorted cells to non-hematopoietic lineage cells was 5% in the surface region, 70% in the stromal region and 15% in the perivascular region. Synovial cells in the perivascular fraction had the greatest proliferation potential. After expansion, surface marker expression profiles and adipogenesis potentials were similar but chondrogenic and calcification potentials were higher in synovial MSCs derived from the perivascular region than in those derived from the surface and stromal regions.ConclusionsWe identified specific markers to isolate synovial cells from the surface, stromal, and perivascular regions of the synovium. Synovial MSCs in the perivascular region had the highest proliferative and chondrogenic potentials among the three regions.
Host-microbiota interactions create a unique metabolic milieu that modulates intestinal environments. Integration of 16S ribosomal RNA (rRNA) sequences and mass spectrometry (MS)-based lipidomics has a great potential to reveal the relationship between bacterial composition and the complex metabolic network in the gut. In this study, we conducted untargeted lipidomics followed by a feature-based molecular MS/MS spectral networking to characterize gut bacteria-dependent lipid subclasses in mice. An estimated 24.8% of lipid molecules in feces were microbiota-dependent, as judged by > 10-fold decrease in antibiotic-treated mice. Among these, there was a series of unique and microbiotarelated lipid structures, including acyl alpha-hydroxyl fatty acid (AAHFA) that was newly identified in this study. Based on the integrated analysis of 985 lipid profiles and 16S rRNA sequence data providing 2,494 operational taxonomic units, we could successfully predict the bacterial species responsible for the biosynthesis of these unique lipids, including AAHFA.
Phascolarctobacterium faecium is an anaerobic microbe known as a member of the human gut microbiome. Here, we report the complete genome sequence of Phascolarctobacterium faecium JCM 30894 and the elucidation of the mechanism for utilization of succinate by this bacterium based on the genome analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.