IntroductionMammographic density has been established as a strong risk factor for breast cancer, primarily using digitized film mammograms. Full-field digital mammography (FFDM) is replacing film mammography, has different properties than film, and provides both raw and processed clinical display representation images. We evaluated and compared FFDM raw and processed breast density measures and their associations with breast cancer.MethodsA case-control study of 180 cases and 180 controls matched by age, postmenopausal hormone use, and screening history was conducted. Mammograms were acquired from a General Electric Senographe 2000D FFDM unit. Percent density (PD) was assessed for each FFDM representation using the operator-assisted Cumulus method. Reproducibility within image type (n = 80) was assessed using Lin's concordance correlation coefficient (rc). Correlation of PD between image representations (n = 360) was evaluated using Pearson's correlation coefficient (r) on the continuous measures and the weighted kappa statistic (κ) for quartiles. Conditional logistic regression was used to estimate odds ratios (ORs) for the PD and breast cancer associations for both image representations with 95% confidence intervals. The area under the receiver operating characteristic curve (AUC) was used to assess the discriminatory accuracy.ResultsPercent density from the two representations provided similar intra-reader reproducibility (rc= 0.92 for raw and rc= 0.87 for processed images) and was correlated (r = 0.82 and κ = 0.64). When controlling for body mass index, the associations of quartiles of PD with breast cancer and discriminatory accuracy were similar for the raw (OR: 1.0 (ref.), 2.6 (1.2 to 5.4), 3.1 (1.4 to 6.8), 4.7 (2.1 to 10.6); AUC = 0.63) and processed representations (OR: 1.0 (ref.), 2.2 (1.1 to 4.1), 2.2 (1.1 to 4.4), 3.1 (1.5 to 6.6); AUC = 0.64).ConclusionsPercent density measured with an operator-assisted method from raw and processed FFDM images is reproducible and correlated. Both percent density measures provide similar associations with breast cancer.
to autophagosomes in a clathrin-dependent manner. In autophagosomes, MPr lost its natural ligands, which resulted in subsequent trafficking of empty receptor(s) back to the surface. together, our data demonstrated a novel mechanism by which Xrt can enhance the effect of immunotherapy and the molecular mechanism of this process. Keywords
Percent mammographic density (PMD) is a strong breast cancer risk factor, however, other mammographic features, such as V, the standard deviation (SD) of pixel intensity, may be associated with risk. We assessed whether PMD, automated PMD (APD), and V, yielded independent associations with breast cancer risk. We included 1900 breast cancer cases and 3921 matched controls from the Nurses’ Health Study (NHS) and the NHSII. Using digitized film mammograms, we estimated PMD using a computer-assisted thresholding technique. APD and V were determined using an automated computer algorithm. We used logistic regression to generate odds ratios (ORs) and 95% confidence intervals (CIs). Median time from mammogram to diagnosis was 4.1 years (interquartile range: 1.6–6.8 years). PMD (OR per SD:1.52, 95% CI: 1.42, 1.63), APD (OR per SD:1.32, 95% CI: 1.24, 1.41), and V (OR per SD:1.32, 95% CI: 1.24, 1.40) were positively associated with breast cancer risk. Associations for APD were attenuated but remained statistically significant after mutual adjustment for PMD or V. Women in the highest quartile of both APD and V (OR vs Q1/Q1: 2.49, 95% CI: 2.02, 3.06), or PMD and V (OR vs Q1/Q1: 3.57, 95% CI: 2.79, 4.58) had increased breast cancer risk. An automated method of PMD assessment is feasible and yields similar, but somewhat weaker, estimates to a manual measure. PMD, APD and V are each independently, positively associated with breast cancer risk. Women with dense breasts and greater texture variation are at the highest relative risk of breast cancer.
Purpose Increased mammographic breast density is a significant risk factor for breast cancer. A reproducible, accurate, automated breast density measurement is required for full field digital mammography (FFDM) to support clinical applications. We evaluated a novel automated percentage of breast density measure (PDa) and made comparisons with the standard operator-assisted measure (PD) using FFDM data. Methods We used a nested breast cancer case-control study matched on age, year of mammogram and diagnosis with images acquired from a specific direct x-ray conversion FFDM technology. PDa was applied to the raw and clinical display (or processed) representation images. We evaluated the transformation (pixel mapping) of the raw image, giving a third representation (raw-transformed), to improve the PDa performance using differential evolution optimization. We applied PD to the raw and clinical display images as a standard for measurement comparison. Conditional logistic regression was used to estimate the odd ratios (ORs) for breast cancer with 95% confidence intervals for all measurements; analyses were adjusted for body mass index (BMI). PDa operates by evaluating signal dependent noise (SDN), captured as local signal variation. Therefore, we characterized the SDN relationship to understand the PDa performance as a function of data representation and investigated a variation analysis of the transformation. Results The associations of the quartiles of operator-assisted PD with breast cancer were similar for the raw [OR: 1.00 (ref.); 1.59 (0.93, 2.70); 1.70 (0.95, 3.04); 2.04 (1.13, 3.67)] and clinical display [OR: 1.00 (ref.); 1.31 (0.79, 2.18); 1.14 (0.65, 1.98); 1.95 (1.09, 3.47)] images. PDa could not be assessed on the raw images without preprocessing. However, PDa had similar associations with breast cancer when assessed on raw-transformed (a) [OR: 1.00 (ref.); 1.27 (0.74, 2.19); 1.86 (1.05, 3.28); 3.00 (1.67, 5.38)] and clinical display (b) [OR: 1.00 (ref.); 1.79 (1.04, 3.11); 1.61 (0.90, 2.88); 2.94 (1.66, 5.19)] images. The SDN analysis showed that a nonlinear relationship between the mammographic signal and its variation (i.e. the biomarker for the breast density) is required for PDa processing. Although variability in the transform influenced the respective PDa distribution, it did not affect the measurement's association with breast cancer. Conclusions PDa assessed on either raw-transformed or clinical display images is a valid automated breast density measurement for a specific FFDM technology and compares well against PD (the standard). Further work is required for measurement generalization.
BackgroundBreast density is a significant breast cancer risk factor measured from mammograms. The most appropriate method for measuring breast density for risk applications is still under investigation. Calibration standardizes mammograms to account for acquisition technique differences prior to making breast density measurements. We evaluated whether a calibration methodology developed for an indirect x-ray conversion full field digital mammography (FFDM) technology applies to direct x-ray conversion FFDM systems.MethodsBreast tissue equivalent (BTE) phantom images were used to establish calibration datasets for three similar direct x-ray conversion FFDM systems. The calibration dataset for each unit is a function of the target/filter combination, x-ray tube voltage, current × time (mAs), phantom height, and two detector fields of view (FOVs). Methods were investigated to reduce the amount of calibration data by restricting the height, mAs, and FOV sampling. Calibration accuracy was evaluated with mixture phantoms. We also compared both intra- and inter-system calibration characteristics and accuracy.ResultsCalibration methods developed previously apply to direct x-ray conversion systems with modification. Calibration accuracy was largely within the acceptable range of ± 4 standardized units from the ideal value over the entire acquisition parameter space for the direct conversion units. Acceptable calibration accuracy was maintained with a cubic-spline height interpolation, representing a modification to previous work. Calibration data is unit specific, can be acquired with the large FOV, and requires a minimum of one reference mAs sample. The mAs sampling, calibration accuracy, and the necessity for machine specific calibration data are common characteristics and in agreement with our previous work.ConclusionThe generality of our calibration approach was established under ideal conditions. Evaluation with patient data using breast cancer status as the endpoint is required to demonstrate that the approach produces a breast density measure associated with breast cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.