We used behavior and event-related potentials (ERPs) to examine auditory stream segregation in people with schizophrenia and control participants. During each trial, a context pattern was presented, consisting of low (A) and high (B) tones in a repeating ABA pattern, with a frequency separation (Δf) of 3, 6, or 12 semitones. Next, a test ABA-pattern was presented that always had a 6-semitone Δf. Larger Δf during the context resulted in more perception of two streams and larger N1 and P2 ERPs, but less perception of two streams during the test pattern. These effects of Δf were smaller in schizophrenia. Individuals with schizophrenia also showed a reduced effect of prior perceptual judgments. Overall, the findings demonstrate that people with schizophrenia have abnormalities in segregating sounds. These abnormalities result from difficulties utilizing frequency cues in addition to reduced temporal context effects.
Background Auditory impairments in schizophrenia have been demonstrated previously, especially for tasks requiring precise encoding of frequency, although it is unclear the extent to which they have difficulty using pitch information and other cues to segregate sounds. We determined the extent to which those with schizophrenia have difficulty using pitch information and other auditory cues to segregate sounds that are presented sequentially. Methods Ten participants with schizophrenia and nine healthy/normal control participants completed a battery of tasks that tested for the ability to perform sequential auditory stream segregation using pitch, amplitude modulation, or inter-aural phase difference as cues to segregation. Results All three sequential segregation tasks showed reduced tendency for those with schizophrenia to perceive segregated sounds, compared to control participants. Conclusions These findings extend prior research by demonstrating a general impairment on sequential sound segregation tasks in schizophrenia, and not just on tasks that require precise encoding of frequency. Together, the pattern of results provide evidence that auditory impairments in schizophrenia result from selective abnormalities in neural circuits that carry out specific computations necessary for stream segregation, as opposed to an impairment in processing specific cues.
The present study sought to test whether perceptual segregation of concurrently played sounds is impaired in schizophrenia (SZ), whether impairment in sound segregation predicts difficulties with a real-world speech-in-noise task, and whether auditory-specific or general cognitive processing accounts for sound segregation problems. Participants with SZ and healthy controls (HCs) performed a mistuned harmonic segregation task during recording of event-related potentials (ERPs). Participants also performed a brief speech-in-noise task. Participants with SZ showed deficits in the mistuned harmonic task and the speech-in-noise task, compared to HCs. No deficit in SZ was found in the ERP component related to mistuned harmonic segregation at around 150 ms (the object-related negativity or ORN), but instead showed a deficit in processing at around 400 ms (the P4 response). However, regression analyses showed that indexes of education level and general cognitive function were the best predictors of sound segregation difficulties, suggesting non-auditory specific causes of concurrent sound segregation problems in SZ.
Background Well-documented auditory processing deficits such as impaired frequency discrimination and reduced suppression of auditory brain responses in schizophrenia (SZ) may contribute to abnormal auditory functioning in everyday life. Lateral suppression of non-stimulated neurons by stimulated neurons has not been extensively assessed in SZ and likely plays an important role in precise encoding of sounds. Therefore, this study evaluated whether lateral suppression of activity in auditory cortex is impaired in SZ. Methods SZ participants and control participants watched a silent movie with subtitles while listening to trials composed of a 0.5 s control stimulus (CS), a 3 s filtered masking noise (FN), and a 0.5 s test stimulus (TS). The CS and TS were identical on each trial and had energy corresponding to the high energy (recurrent suppression) or low energy (lateral suppression) portions of the FN. Event-related potentials were recorded and suppression was measured as the amplitude change between CS and TS. Results Peak amplitudes of the auditory P2 component (160–260 ms) showed reduced lateral but not recurrent suppression in SZ participants. Conclusions Reduced lateral suppression in SZ participants may lead to overlap of neuronal populations representing different auditory stimuli. Such imprecise neural representations may contribute to the difficulties SZ participants have in discriminating complex stimuli in everyday life.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.