Steamboat Geyser in Yellowstone National Park’s Norris Geyser Basin began a prolific sequence of eruptions in March 2018 after 34 y of sporadic activity. We analyze a wide range of datasets to explore triggering mechanisms for Steamboat’s reactivation and controls on eruption intervals and height. Prior to Steamboat’s renewed activity, Norris Geyser Basin experienced uplift, a slight increase in radiant temperature, and increased regional seismicity, which may indicate that magmatic processes promoted reactivation. However, because the geothermal reservoir temperature did not change, no other dormant geysers became active, and previous periods with greater seismic moment release did not reawaken Steamboat, the reason for reactivation remains ambiguous. Eruption intervals since 2018 (3.16 to 35.45 d) modulate seasonally, with shorter intervals in the summer. Abnormally long intervals coincide with weakening of a shallow seismic source in the geyser basin’s hydrothermal system. We find no relation between interval and erupted volume, implying unsteady heat and mass discharge. Finally, using data from geysers worldwide, we find a correlation between eruption height and inferred depth to the shallow reservoir supplying water to eruptions. Steamboat is taller because water is stored deeper there than at other geysers, and, hence, more energy is available to power the eruptions.
Partitioning tracer testing was performed in discrete intervals within a fractured bedrock tetrachloroethene (PCE) dense nonaqueous-phase liquid (DNAPL) source area to assess the fracture flow field and DNAPL architecture. Results confirmed that the partitioning tracer testing was able to identify and quantify low levels of residual DNAPL along flow paths in hydraulically conductive fractures. DNAPL fracture saturations (Sn) ranged from undetectable to 0.007 (DNAPL volume/fracture volume). A comparison of the fracture flow field to the DNAPL distribution indicated that the highest value of Sn was observed in the least transmissive fracture (or fracture zone). Application of a simple ambient dissolution model showed that the DNAPL present in this low transmissivity zone would persist longer than the DNAPL present in more transmissive fractures and would persist for 200 years (in the absence of any degradation reactions). Assessment of PCE mass distribution between the rock matrix and fractures showed that, due to the presence of DNAPL, the rock matrix accounted for less than 10% of the total PCE mass. The evaluation of PCE concentration profiles in the rock matrix and the estimated diffusional flux from the rock matrix suggest that the elevated PCE groundwater concentrations observed in the fractures likely are due to the presence of the residual DNAPL sources and that removal of the residual DNAPL sources within the fractures would result in a significant decrease in dissolved PCE concentrations in the source area.
Steamboat Geyser in Yellowstone National Park is the tallest active geyser on Earth and is believed to have hydrologic connection to Cistern Spring, a hydrothermal pool ∼100 m southwest from the geyser vent. Despite broad scientific interest, rare episodic Steamboat eruptions have made it difficult to study its eruption dynamics and underground plumbing architecture. In response to the recent reactivation of Steamboat, which has produced more than 130 eruptions since March 2018, we deployed a dense seismic nodal array surrounding the enigmatic geyser in the summer of 2019. The array recorded abundant 1–5 Hz hydrothermal tremor originating from phase‐transition events within both Steamboat Geyser and Cistern Spring. To constrain the spatiotemporal distribution of the tremor sources, an interferometric‐based polarization analysis was developed. The observed tremor locations indicate that the conduit beneath Steamboat is vertical and extends down to ∼120 m depth and the plumbing of Cistern includes a shallow vertical conduit connecting with a deep, large, and laterally offset reservoir ∼60 m southeast of the surface pool. No direct connection between Steamboat and Cistern plumbing structures is found. The temporal variation of tremor combined with in situ temperature and water depth measurements of Cistern reveals interaction between Steamboat and Cistern throughout the eruption/recharge cycles. The observed delayed responses of Cistern Spring in reaction to Steamboat eruptions and recharge suggest that the two plumbing structures may be connected through a fractured/porous medium instead of a direct open channel, consistent with our inferred plumbing structure.
In the past two decades, the U.S. Geological Survey and the National Park Service have studied hydrothermal activity across the Yellowstone Plateau Volcanic Field (YPVF) to improve the understanding of the magmatic‐hydrothermal system and to provide a baseline for detecting future anomalous activity. In 2017 and 2018 we sampled water and gas over a large area in the southwest YPVF and used Landsat 8 thermal infrared data to estimate radiative heat flow. Most of the thermal activity in this region is in close proximity to the Yellowstone Caldera boundary. Springs and fumaroles discharge from a variety of lithologies, including some of the youngest rhyolites in the YPVF. Gas compositions and helium isotope ratios of most samples resemble those in other parts of the YPVF. The waters have meteoric origins, and tritium was detected in several samples. Thermal waters from some areas have compositions that plot along a line connecting thermal and nonthermal water endmember compositions. The thermal water endmember equilibrated at 160°C–170°C, lower than waters in Yellowstone's geyser basins. Heat discharged by springs and fumaroles originates from within the Yellowstone Caldera and is transported laterally by advection, mainly along the base of rhyolite flows that cover the inferred caldera boundaries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.