Summary Chromothripsis is a catastrophic cellular event recently described in cancer in which chromosomes undergo massive deletion and rearrangement. Here we report a case in which chromothripsis spontaneously cured a patient with WHIM syndrome, an autosomal dominant combined immunodeficiency disease caused by gain-of-function mutation of the chemokine receptor CXCR4. In this patient, deletion of the disease allele, CXCR4R334X, as well as 163 other genes from one copy of chromosome 2 occurred in a hematopoietic stem cell (HSC) that repopulated the myeloid but not the lymphoid lineage. In competitive mouse bone marrow (BM) transplantation experiments, Cxcr4 haploinsufficiency was sufficient to confer a strong long-term engraftment advantage of donor BM over BM from either wild-type or WHIM syndrome model mice, suggesting a potential mechanism for the patient’s cure. Our findings suggest that partial inactivation of CXCR4 may have general utility as a strategy to promote HSC engraftment in transplantation.
2.1 Introduction WHIM syndrome is a rare combined primary immunodeficiency disorder caused by autosomal dominant gain-of-function mutations in the chemokine receptor CXCR4. It is the only Mendelian condition known to be caused by mutation of a chemokine or chemokine receptor. As such, it provides a scientific opportunity to understand chemokine-dependent immunoregulation in humans and a medical opportunity to develop mechanism-based treatment and cure strategies. 2.2 Areas covered This review covers the clinical features, genetics, immunopathogenesis and clinical management of WHIM syndrome. Clinical trials of targeted therapeutic agents and potential cure strategies are also included. 2.3 Expert opinion WHIM syndrome may be particularly amenable to mechanism-based therapeutics for three reasons: 1) CXCR4 has been validated as the molecular target in the disease by Mendelian genetics; 2) the biochemical abnormality is excessive CXCR4 signaling; and 3) antagonists selective for CXCR4 have been developed. Plerixafor is FDA-approved for hematopoietic stem cell (HSC) mobilization and has shown preliminary safety and efficacy in phase I clinical trials in WHIM syndrome. Gene editing may represent a viable cure strategy, since chromothriptic deletion of the disease allele in HSCs resulted in clinical cure of a patient and because CXCR4 haploinsufficiency enhances engraftment of transplanted HSCs in mice.
For gene therapy of gain-of-function autosomal dominant diseases, either correcting or deleting the disease allele is potentially curative. To test whether there may be an advantage of one approach over the other for WHIM (warts, hypogammaglobulinemia, infections, and myelokathexis) syndrome - a primary immunodeficiency disorder caused by gain-of-function autosomal dominant mutations in chemokine receptor CXCR4 - we performed competitive transplantation experiments using both lethally irradiated WT (Cxcr4+/+) and unconditioned WHIM (Cxcr4+/w) recipient mice. In both models, hematopoietic reconstitution was markedly superior using BM cells from donors hemizygous for Cxcr4 (Cxcr4+/o) compared with BM cells from Cxcr4+/+ donors. Remarkably, only approximately 6% Cxcr4+/o hematopoietic stem cell (HSC) chimerism after transplantation in unconditioned Cxcr4+/w recipient BM supported more than 70% long-term donor myeloid chimerism in blood and corrected myeloid cell deficiency in blood. Donor Cxcr4+/o HSCs differentiated normally and did not undergo exhaustion as late as 465 days after transplantation. Thus, disease allele deletion resulting in Cxcr4 haploinsufficiency was superior to disease allele repair in a mouse model of gene therapy for WHIM syndrome, allowing correction of leukopenia without recipient conditioning.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.