Bee products were historically used as a therapheutic approach and in food consumption, while more recent data include important details that could validate them as food supplements due to their bioproperties, which support their future use as medicines. In this review data, data collected from bee pollen (BP) and bee bread (BB) essays will be discussed and detailed for their nutritional and health protective properties as functional foods. Dietary antioxidants intake derived from BP and BB have been associated with the prevention and clinical treatment of multiple diseases. The beneficial effects of BP and BB on health result from the presence of multiple polyphenols which possess anti-inflammatory properties, phytosterols and fatty acids, which play anticancerogenic roles, as well as polysaccharides, which stimulate immunological activity. From the main bioactivity studies with BP and BB, in vitro studies and animal experiments, the stimulation of apoptosis and the inhibition of cell proliferation in multiple cell lines could be one of the major therapeutic adjuvant effects to be explored in reducing tumor growth. Tables summarizing the main data available in this field and information about other bio-effects of BP and BB, which support the conclusions, are provided. Additionally, a discussion about the research gaps will be presented to help further experiments that complete the tree main World Health Organization (WHO) Directives of Efficiency, Safety and Quality Control for these products.
Background: vegetative diversity is based on different climate and geographical origins. In terms of beekeeping, herbal diversity is strongly correlated to the production of a wide variety of honey. Therefore, based on the existing plant diversity in each country, multiple honey varieties are produced with different health characteristics. While beekeeping potential and consumption preferences are reflected in products’ variety, this leads to an increase in the region’s economy and extensive export. In the last years, monofloral honey has gained interest from consumers and especially in the medicinal field due to the presence of phytochemicals which are directly linked to health benefits, wound healing, antioxidant, anticancer and anti-inflammatory activities. Scope and approach: this review aims to highlight the physicochemical properties, mineral profiles and antioxidant activities of selected monofloral honeys based on their botanical and geographical origin. Moreover, this review focuses on the intercorrelation between monofloral honey’s antioxidant compounds and in vitro and in vivo activities, focusing on the apoptosis and cell proliferation inhibition in various cell lines, with a final usage of honey as a potential therapeutic product in the fight towards reducing tumor growth. Key findings and conclusions: multiple studies have demonstrated that monofloral honeys have different physicochemical structures and bioactive compounds. Useful chemical markers to distinguish between monofloral honeys were evidenced, such as: 2-methoxybenzoic acid and trimethoxybenzoic acid are distinctive to Manuka honey while 4-methoxyphenylacetic acid is characteristic to Kanuka honey. Furthermore, resveratrol, epigallocatechin and pinostrobin are markers distinct to Sage honey, whereas carvacrol and thymol are found in Ziziphus honey. Due to their polyphenolic profile, monofloral honeys have significant antioxidant activity, as well as antidiabetic, antimicrobial and anticancer activities. It was demonstrated that Pine honey decreased the MDA and TBARS levels in liver, kidney, heart and brain tissues, whereas Malicia honey reduced the low-density lipoprotein level. Consumption of Clover, Acacia and Gelam honeys reduced the weight and adiposity, as well as trygliceride levels. Furthermore, the antiproliferative effect of chrysin, a natural flavone in Acacia honey, was demonstrated in human (A375) and murine (B16-F1) melanoma cell lines, whereas caffeic acid, a phenolic compound found in Kelulut honey, proves to be significant candidate in the chemoprevention of colon cancer. Based on these features, the use of hiney in the medicinal field (apitherapy), and the widespread usage of natural product consumption, is gaining interest by each year.
The studies that reveal the impact of the bee products on overall health are accompanied by new researches every year, and the importance of these researches are gradually on the rise. Bee products that are used as food and food supplements and drug concentrations in the historic process are drawing the attention with their marvellous characteristic features. The search for nourishment of the body on behalf of healthy living is currently being searched by many people. Therefore, the consumption of products that protect the health appears as the primary preference of people. In the light of this recent tendency, food sector is now offering well-supported products that are suitable for this preference. At this point, bee products such as honey, pollen, bee bread, royal jelly and propolis gain importance as functional food with their nutritious features that help in protecting the health. In this article, within the consideration of the researches that evaluate bee products as functional food, we aim to introduce the prominence of bee products in our nourishment and overall health.
Recently, an increasing interest is paid to bee products obtained as a result of the fermentation process. Some of them can be consumed directly (bee-collected pollen, honey, bee bread etc.), while others are the result of lactic and/or acid fermentation (honey vinegar and honey wine). Bee bread is the result of pollens’ lactic fermentation, whereas mead is obtained by honeys’ lactic fermentation. Moreover, as a result of honey acetic acid fermentation, honey vinegar is obtained. Sensory characteristics and aroma composition have been scarcely studied, which may depend on the starter culture and fermentation process. Along with the medicinal properties they are a vital resource for future researches as they are of particular importance in the food market. In this review, we discuss the aroma-active compounds, taste, and sensorial characteristics of fermented bee products along with the approaches that can be developed for the flavor improvement based on existing technologies. Furthermore, the beneficial effects on human health are also described, with special attention that should be attributed to finding the use of probiotics in these fermented products as health-promoting effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.