Polyoxometalate (POM) layers have been used to realize efficient and long-term stable single-junction polymer photovoltaic devices with diverse configuration and donor:acceptor combination in the photoactive blend and polymer tandem cells through functioning as effective hole extraction layers and, also, as recombination layers in the interconnecting unit of the tandem cell. Their unique properties, such as their extremely high work function (W F ) of 6.0-6.2 eV, their high degree of crystallinity without any post annealing requirements and, especially, the position of their lowest unoccupied molecular orbital (LUMO), were used to control the characteristics of optoelectronic devices. It was found that POMs having a deep LUMO level lying below the highest occupied molecular orbital (HOMO) of the donor polymer are highly beneficial for device operation due to the interfacial p-doping of the latter. We demonstrated conventional and reverse structure single-junction cells reaching an efficiency of 7.9% in the latter case and a tandem cell with an efficiency of 9.9% using an all 2 solution processed inverted structure, where a POM layer simultaneously offers enhanced hole extraction in the sub-cells and minimal losses in the recombination unit. The specific properties of four POM materials and their role as functional layers in those different types of polymer photovoltaic devices are discussed.15% are feasible for polymer tandem solar cells with an optimized pair of absorber materials with different
As organic solar cells (OSCs) and perovskite solar cells (PVSCs) move closer to commercialization, further efforts toward optimizing both cell efficiency and stability are needed. As interfaces strongly affect device performance and degradation processes, interfacial engineering by employing various materials as hole transport layers (HTLs) and electron transport layers (ETLs) has been a very active field of research in OSCs and PVSCs. Among them, inorganic materials exhibit significant advantages in promoting device performance due to their excellent charge transporting properties and intrinsic thermal and chemical robustness. In this review, an extensive overview is provided of inorganic semiconductors such as copper‐based ones with emphasis on copper iodide and copper thiocyanate, transition metal chalcogenides, nitrides and carbides as well as hybrid materials based on these inorganic compounds that have been recently employed as HTLs and ETLs in OSCs and PVSCs. Following a short discussion of the main optoelectronic and physical properties that interfacial materials used as HTLs and ETLs should possess, the functionalities of the aforementioned materials as interfacial, charge transport, layers in OSCs and PVSCs are discussed in depth. It is concluded by providing guidelines for further developments that could significantly extend the implementation of these materials in solar cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.