Anthocyanins are essential contributors to fruit coloration, an important quality feature and a breed determining trait of a sweet cherry fruit. It is well established that the biosynthesis of anthocyanins is regulated by an interplay of specific transcription factors belonging to MYB and bHLH families accompanied by a WD40 protein. In this study, we isolated and analyzed PaWD40, PabHLH3, PabHLH33, and several closely related MYB10 gene variants from different cultivars of sweet cherry, analyzed their expression in fruits with different anthocyanin levels at several developmental stages, and determined their capabilities to modulate anthocyanin synthesis in leaves of two Nicotiana species. Our results indicate that transcription level of variant PaMYB10.1-1 correlates with fruit coloration, but anthocyanin synthesis in Nicotiana was induced by another variant, PaMYB10.1-3, which is moderately expressed in fruits. The analysis of two fruit-expressed bHLH genes revealed that PabHLH3 enhances MYB-induced anthocyanin synthesis, whereas PabHLH33 has strong inhibitory properties.
Gram-negative bacteria belonging to the genus Klebsiella are important nosocomial pathogens, readily acquiring resistance to all known antibiotics. Bacteriocins, non-antibiotic antibacterial proteins, have been earlier proposed as potential therapeutic agents for control of other Gram-negative species such as Escherichia, Pseudomonas and Salmonella. This study is the first report describing pore-forming and peptidoglycan-degrading bacteriocins klebicins from Klebsiella. We have identified, cloned, expressed in plants and characterized nine pore-forming and peptidoglycan-degrading bacteriocins from different Klebsiella species. We demonstrate that klebicins can be used for broad and efficient control of 101 of the 107 clinical isolates representing five Klebsiella species, including multi-drug resistant pathovars and pathovars resistant to carbapenem antibiotics.
Agrotransfection with viral vectors is an effective solution for the transient production of valuable proteins in plants grown in contained facilities. Transfection methods suitable for field applications are desirable for the production of high-volume products and for the transient molecular reprogramming of plants. The use of genetically modified (GM) Agrobacterium strains for plant transfections faces substantial biosafety issues. The environmental biosafety of GM Agrobacterium strains could be improved by regulating their T-DNA transfer via chemically inducible expression of virE2, one of the essential Agrobacterium virulence genes. In order to identify strong and stringently regulated promoters in Agrobacterium strains, we evaluated isopropyl-β-d-thiogalactoside-inducible promoters Plac, Ptac, PT7/lacO, and PT5/lacOlacO and cumic acid-inducible promoters PlacUV5/CuO, Ptac/CuO, PT5/CuO, and PvirE/CuO. Nicotiana benthamiana plants were transfected with a virE2-deficient A. tumefaciens strain containing transient expression vectors harboring inducible virE2 expression cassettes and containing a marker green fluorescent protein (GFP) gene in their T-DNA region. Evaluation of T-DNA transfer was achieved by counting GFP expression foci on plant leaves. The virE2 expression from cumic acid-induced promoters resulted in 47 to 72% of wild-type T-DNA transfer. Here, we present efficient and tightly regulated promoters for gene expression in A. tumefaciens and a novel approach to address environmental biosafety concerns in agrobiotechnology.
Horticultural crops of the Ribes genus are valued for their anthocyanin-rich fruits, but until now, there were no data about the genes and regulation of their flavonoid pathway. In this study, the coding sequences of flavonoid pathway enzymes and their putative regulators MYB10, bHLH3 and WD40 were isolated, and their expression analyzed in fruits with varying anthocyanin levels from different cultivars of four species belonging to the Ribes genus. Transcription levels of anthocyanin synthesis enzymes and the regulatory gene RrMYB10 correlated with fruit coloration and anthocyanin quantities of different Ribes cultivars. Regulatory genes were tested for the ability to modulate anthocyanin biosynthesis during transient expression in the leaves of two Nicotiana species and to activate Prunus avium promoters of late anthocyanin biosynthesis genes in N. tabacum. Functional tests showed a strong capability of RrMyb10 to induce anthocyanin synthesis in a heterologous system, even without the concurrent expression of any heterologous bHLH, whereas RrbHLH3 enhanced MYB-induced anthocyanin synthesis. Data obtained in this work facilitate further analysis of the anthocyanin synthesis pathway in key Ribes species, and potent anthocyanin inducer RrMyb10 can be used to manipulate anthocyanin expression in heterologous systems.
High-value pharmaceutical products are already successfully produced in contained facilities using Agrobacterium-mediated transient transformation of plants. However, transfection methods suitable for open field applications are still desirable as a cheaper alternative. Biosafety concerns related to the use of recombinant agrobacteria in an industrial transfection process include possible transformation or transfection of unintended hosts or spread of the genetically modified agrobacteria in the environment. In this paper, we explored a novel biocontrol approach resulting in greater biosafety of the transient expression process in plants. Our proposed solution involves inducible expression of Agrobacterium tumefaciens toxin PemK and antitoxin PemI that provides for strictly regulated T-DNA transfer from agrobacteria to plants. We also identified several other toxins from putative Agrobacterium toxin-antitoxin modules and demonstrate their potential usefulness in the control of Agrobacterium tumefaciens as a DNA vector.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.