Virion infectivity factor (Vif) is an accessory protein encoded by HIV-1 and is critical for viral infection of the host CD4 ؉ T cell population. Vif induces ubiquitination and subsequent degradation of Apo3G, a cytosolic cytidine deaminase that otherwise targets the retroviral genome. Interaction of Vif with the cellular Cullin5-based E3 ubiquitin ligase requires a conserved BC box and upstream residues that are part of the conserved H-(Xaa)5-C-(Xaa)17-18-C-(Xaa)3-5-H (HCCH) motif. The HCCH motif is involved in stabilizing the Vif-Cullin 5 interaction, but the exact role of the conserved His and Cys residues remains elusive. In this report, we find that full-length HIV-1 Vif, as well as a HCCH peptide, is capable of binding to zinc with high specificity. Zinc binding induces a conformational change that leads to the formation of large protein aggregates. EDTA reversed aggregation and regenerated the apoprotein conformation. Cysteine modification studies with the HCCH peptide suggest that C114 is critical for stabilizing the fold of the apopeptide, and that C133 is located in a solvent-exposed region with no definite secondary structure. Selective alkylation of C133 reduced metal-binding specificity of the HCCH peptide, allowing cobalt to bind with rates comparable to that with zinc. This study demonstrates that the HCCH motif of HIV-1 Vif is a unique metal-binding domain capable of mediating protein-protein interactions in the presence of zinc and adds to a growing list of examples in which metal ion binding induces protein misfolding and/or aggregation.aggregation ͉ cullin ubiquitin ligase ͉ metal-binding protein
Analytical ultracentrifugation (AUC) is a first principles based method to determine absolute sedimentation coefficients and buoyant molar masses of macromolecules and their complexes, reporting on their size and shape in free solution. The purpose of this multi-laboratory study was to establish the precision and accuracy of basic data dimensions in AUC and validate previously proposed calibration techniques. Three kits of AUC cell assemblies containing radial and temperature calibration tools and a bovine serum albumin (BSA) reference sample were shared among 67 laboratories, generating 129 comprehensive data sets. These allowed for an assessment of many parameters of instrument performance, including accuracy of the reported scan time after the start of centrifugation, the accuracy of the temperature calibration, and the accuracy of the radial magnification. The range of sedimentation coefficients obtained for BSA monomer in different instruments and using different optical systems was from 3.655 S to 4.949 S, with a mean and standard deviation of (4.304 ± 0.188) S (4.4%). After the combined application of correction factors derived from the external calibration references for elapsed time, scan velocity, temperature, and radial magnification, the range of s-values was reduced 7-fold with a mean of 4.325 S and a 6-fold reduced standard deviation of ± 0.030 S (0.7%). In addition, the large data set provided an opportunity to determine the instrument-to-instrument variation of the absolute radial positions reported in the scan files, the precision of photometric or refractometric signal magnitudes, and the precision of the calculated apparent molar mass of BSA monomer and the fraction of BSA dimers. These results highlight the necessity and effectiveness of independent calibration of basic AUC data dimensions for reliable quantitative studies.
Steady-state initial rates of acetyl-CoA synthesis (upsilon/[E(tot)]) catalyzed by acetyl-CoA synthase from Clostridium thermoaceticum (ACS) were determined at various partial pressures of CO and CO2. When [CO] was varied from 0 to 100 microM in a balance of Ar, rates increased sharply from 0.3 to 100 min(-1). At [CO] > 100 microM, rates declined sharply and eventually stabilized at 10 min(-1) at 980 microM CO. Equivalent experiments carried out in CO2 revealed similar inhibitory behavior and residual activity under saturating [CO]. Plots of upsilon/[E(tot)] vs [CO2] at different fixed inhibitory [CO] revealed that Vmax/[E(tot)] (kcat) decreased with increasing [CO]. Plots of upsilon/[E(tot)] vs [CO2] at different fixed noninhibitory [CO] showed that Vmax/[E(tot)] was insensitive to changes in [CO]. Of eleven candidate mechanisms, the simplest one that fit the data best had the following key features: (a) either CO or CO2 (at a designated reductant level and pH) activate the enzyme (E' + CO right arrow over left arrow E, E' + CO2/2e-/2H+ right arrow over left arrow E); (b) CO and CO2 are both substrates that compete for the same enzyme form (E + CO right arrow over left arrow ECO, E + CO2/2e-/2H+ right arrow over left arrow ECO, and ECO --> E + P); (c) between 3 and 5 molecules of CO bind cooperatively to an enzyme form different from that to which CO2 and substrate CO bind (nCO + ECO right arrow over left arrow (CO)nECO), and this inhibits catalysis; and (d) the residual activity arises from either the (CO)nECO state or a heterogeneous form of the enzyme. Implications of these results, focusing on the roles of CO and CO2 in catalysis, are discussed.
The majority of proteins targeted to the peroxisomal lumen contain a C-terminal peroxisomal targeting signal-1 (PTS1) that is bound by the peroxin Pex5p. The PTS1 is generally regarded as a C-terminal tripeptide that adheres to the consensus (S/A/C)(K/R/H)(L/M). Previously, we studied the binding affinity of peptides of the form YQX(-3)X(-2)X(-1) to the peptide-binding domain of human Pex5p (referred to as Pex5p-C). Optimal affinity was found for YQSKL, which bound with an affinity of 200 +/- 40 nM. To extend this work, we investigated the properties of a peptide containing the last 9 residues of acyl-CoA oxidase (RHYLKPLQSKL) and discovered that it binds to Pex5p-C with a dissociation constant of 1.4 +/- 0.4 nM, 180 times tighter than YQSKL. Further analysis revealed that the enhanced affinity is primarily due to the presence of leucine in the (-5) position. In addition, a peptide corresponding to the luciferase C-terminus (YKGGKSKL) was found to bind Pex5p-C about 20 times tighter than YQSKL. The majority of this effect results from having lysine in position (-4). Catalase contains a noncanonical PTS1 (-AREKANL). The affinity of YQANL was found to be 3600 +/- 400 nM. This relatively weak binding is consistent with previous unsuccessful attempts to direct chloramphenicol acetyltransferase to the peroxisome by fusing -ANL to its C-terminus (-GGA-ANL). The peptides YKANL, YEKANL, YREKANL, and YAREKANL all bound Pex5p-C with higher affinities than did YQANL, but the affinities are still lower than peptides that correspond to functional targeting signals in other contexts. Because both catalase and Pex5p are tetramers (as opposed to the monomeric Pex5p-C and the peptides used in our studies), multidentate effects on binding affinity between Pex5p and other oligomeric proteins should be considered. Our study provides direct thermodynamic data revealing that peptide binding to Pex5p-C binding is favored by lysine in the (-4) position and leucine in the (-5) position. Our results suggest that peptides or proteins with optimized residues in the (-4) and/or (-5) positions can bind to Pex5p with affinities that are at least two orders of magnitude greater than that of YQSKL, and that this stabilization can compensates for otherwise weakly binding PTS1s.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.