We present a general construction of a □κ-sequence in Jensen's fine structural extender models. This construction yields a local definition of a canonical □κ-sequence as well as a characterization of those cardinals κ, for which the principle □κ fails. Such cardinals are called subcompact and can be described in terms of elementary embeddings. Our construction is carried out abstractly, making use only of a few fine structural properties of levels of the model, such as solidity and condensation.
Annals of Pure and Applied Logic 84 (1997) 219-255. doi:10.1016/S0168-0072(96)00032-2Received by publisher: 1994-12-22Harvest Date: 2016-01-04 12:21:35DOI: 10.1016/S0168-0072(96)00032-2Page Range: 219-25
We show that either of the following hypotheses imply that there is an inner model with a proper class of strong cardinals and a proper class of Woodin cardinals. 1) There is a countably closed cardinal κ ≥ ℵ such that □κ and □(κ) fail. 2) There is a cardinal κ such that κ is weakly compact in the generic extension by Col(κ, κ+). Of special interest is 1) with κ = ℵ3 since it follows from PFA by theorems of Todorcevic and Velickovic. Our main new technical result, which is due to the first author, is a weak covering theorem for the model obtained by stacking mice over Kc∥κ.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.